Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model

被引:64
作者
Chang, TC [1 ]
Guo, WL
Guo, XM
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China
[3] Tongji Univ, Dept Civil Engn, Shanghai 200092, Peoples R China
关键词
D O I
10.1103/PhysRevB.72.064101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on a molecular mechanics model, analytical solutions are obtained for the critical buckling strain of multiwalled carbon nanotubes (MWNT's) under axial compression and bending. We show that only part of the outer layers buckles first while the remaining inner part remains stable in a very thick MWNT, which is quite different from the initial buckling mode of a relatively thin MWNT in which all individual tubes buckle simultaneously. Such a difference in the initial buckling modes results in quite different size effects on the critical buckling strain of thin and thick MWNT's. For instance, inserting more inner individual tubes may increase the critical buckling strain of a thin MWNT, but cannot increase the critical buckling strain of a thick tube. The effects of tube size on the initial buckling wavelength are also examined, and it is shown that the initial buckling wavelength is weakly dependent on the thickness of the MWNT.
引用
收藏
页数:11
相关论文
共 51 条
[1]   CONFORMATIONAL-ANALYSIS .130. MM2 - HYDROCARBON FORCE-FIELD UTILIZING V1 AND V2 TORSIONAL TERMS [J].
ALLINGER, NL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (25) :8127-8134
[2]   Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes [J].
Arroyo, M ;
Belytschko, T .
PHYSICAL REVIEW LETTERS, 2003, 91 (21) :1-215505
[3]   Deformation of carbon nanotubes in nanotube-polymer composites [J].
Bower, C ;
Rosen, R ;
Jin, L ;
Han, J ;
Zhou, O .
APPLIED PHYSICS LETTERS, 1999, 74 (22) :3317-3319
[4]   Elastic axial buckling of carbon nanotubes via a molecular mechanics model [J].
Chang, TC ;
Li, GQ ;
Guo, XM .
CARBON, 2005, 43 (02) :287-294
[5]   Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model [J].
Chang, TC ;
Gao, HJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (06) :1059-1074
[6]  
CHENG HM, 2002, CARBON NANOTUBES SYN
[7]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150
[8]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[9]   Bending and buckling of carbon nanotubes under large strain [J].
Falvo, MR ;
Clary, GJ ;
Taylor, RM ;
Chi, V ;
Brooks, FP ;
Washburn, S ;
Superfine, R .
NATURE, 1997, 389 (6651) :582-584
[10]   Interactions of carbon-nanotubule proximal probe tips with diamond and graphene [J].
Garg, A ;
Han, J ;
Sinnott, SB .
PHYSICAL REVIEW LETTERS, 1998, 81 (11) :2260-2263