Integrating spatial gene expression and breast tumour morphology via deep learning

被引:234
作者
He, Bryan [1 ]
Bergenstrahle, Ludvig [2 ]
Stenbeck, Linnea [2 ]
Abid, Abubakar [3 ]
Andersson, Alma [2 ]
Borg, Ake [4 ]
Maaskola, Jonas [2 ]
Lundeberg, Joakim [2 ]
Zou, James [1 ,3 ,5 ,6 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] KTH Royal Inst Technol, Sch Biotechnol, Stockholm, Sweden
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Lund Univ, Div Oncol & Pathol, Lund, Sweden
[5] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[6] Chan Zuckerberg Biohub, San Francisco, CA 94115 USA
基金
瑞典研究理事会;
关键词
CANCER; HETEROGENEITY;
D O I
10.1038/s41551-020-0578-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Spatial transcriptomics allows for the measurement of RNA abundance at a high spatial resolution, making it possible to systematically link the morphology of cellular neighbourhoods and spatially localized gene expression. Here, we report the development of a deep learning algorithm for the prediction of local gene expression from haematoxylin-and-eosin-stained histopathology images using a new dataset of 30,612 spatially resolved gene expression data matched to histopathology images from 23 patients with breast cancer. We identified over 100 genes, including known breast cancer biomarkers of intratumoral heterogeneity and the co-localization of tumour growth and immune activation, the expression of which can be predicted from the histopathology images at a resolution of 100 mu m. We also show that the algorithm generalizes well to The Cancer Genome Atlas and to other breast cancer gene expression datasets without the need for re-training. Predicting the spatially resolved transcriptome of a tissue directly from tissue images may enable image-based screening for molecular biomarkers with spatial variation. Deep learning can predict spatial variations in gene expression from haematoxylin-and-eosin-stained histopathology images of patients with cancer.
引用
收藏
页码:827 / 834
页数:8
相关论文
共 39 条
[1]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[2]   Spatially resolved, highly multiplexed RNA profiling in single cells [J].
Chen, Kok Hao ;
Boettiger, Alistair N. ;
Moffitt, Jeffrey R. ;
Wang, Siyuan ;
Zhuang, Xiaowei .
SCIENCE, 2015, 348 (6233)
[3]   Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis [J].
Cheng, Jun ;
Zhang, Jie ;
Han, Yatong ;
Wang, Xusheng ;
Ye, Xiufen ;
Meng, Yuebo ;
Parwani, Anil ;
Han, Zhi ;
Feng, Qianjin ;
Huang, Kun .
CANCER RESEARCH, 2017, 77 (21) :E91-E100
[4]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[5]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH [J].
Eng, Chee-Huat Linus ;
Lawson, Michael ;
Zhu, Qian ;
Dries, Ruben ;
Koulena, Noushin ;
Takei, Yodai ;
Yun, Jina ;
Cronin, Christopher ;
Karp, Christoph ;
Yuan, Guo-Cheng ;
Cai, Long .
NATURE, 2019, 568 (7751) :235-+
[8]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[9]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778