Computing the characteristic roots for delay differential equations

被引:84
作者
Breda, D [1 ]
Maset, S
Vermiglio, R
机构
[1] Univ Padua, Dottorato Matemat Computaz, Padua, Italy
[2] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
[3] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
关键词
characteristic roots; delay differential equations; infinite generator; semigroup solution; eigenvalue problem;
D O I
10.1093/imanum/24.1.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new approach to computing the rightmost characteristic roots of linear Delay Differential Equations (DDEs) with multiple discrete and distributed delays is presented. It is based on the discretization of the infinitesimal generator of the solution operators semigroup and it avoids the use of the characteristic equation. The approximated roots are obtained by a large sparse standard eigenvalue problem.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 16 条
[1]  
Bau D., 1997, NUMERICAL LINEAR ALG
[2]  
Bellen A, 2000, NUMER MATH, V84, P351, DOI 10.1007/s002119900106
[3]  
BREDA D, 2002, RR22002 U UD DEP MAT
[4]  
CHOW SN, 1982, GMW SERIES, V251
[5]  
CONWAY JB, 1978, GMW SERIES, V11
[6]  
Diekmann O, 1995, AMS SERIES, V110
[7]   On stability of LMS methods and characteristic roots of delay differential equations [J].
Engelborghs, K ;
Roose, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) :629-650
[8]   Numerical bifurcation analysis of delay differential equations [J].
Engelborghs, K ;
Luzyanina, T ;
Roose, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) :265-275
[9]   Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations [J].
Engelborghs, K ;
Roose, D .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 10 (3-4) :271-289
[10]  
ENGELBORGHS K, 2001, TW330 KU LEUV DEP CO