Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor α expression

被引:174
作者
Finzsch, Markus [1 ]
Stolt, C. Claus [1 ]
Lommes, Petra [1 ]
Wegner, Michael [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Biochem, Emil Fischer Zentrum, D-91054 Erlangen, Germany
来源
DEVELOPMENT | 2008年 / 135卷 / 04期
关键词
sry; high-mobility group; redundancy; SoxE; PDGF; glia; transgenic mice;
D O I
10.1242/dev.010454
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Specification of the myelin-forming oligodendrocytes of the central nervous system requires the Sox9 transcription factor, whereas terminal differentiation depends on the closely related Sox10. Between specification and terminal differentiation, Sox9 and Sox10 are co-expressed in oligodendrocyte precursors and are believed to exert additional functions. To identify such functions, we have deleted Sox9 specifically in already specified oligodendrocyte precursors of the spinal cord. In the absence of Sox9, oligodendrocyte precursors developed normally and started terminal differentiation on schedule. However, when Sox10 was additionally deleted, oligodendrocyte precursors exhibited an altered migration pattern and were present in reduced numbers because of increased apoptosis rates. Remaining precursors continued to express many characteristic oligodendroglial markers. Aberrant expression of astrocytic and neuronal markers was not observed. Strikingly, we failed to detect PDGF receptor alpha expression in the mutant oligodendrocyte precursors, arguing that PDGF receptor alpha is under transcriptional control of Sox9 and Sox10. Altered PDGF receptor alpha expression is furthermore sufficient to explain the observed phenotype, as PDGF is both an important survival factor and migratory cue for oligodendrocyte precursors. We thus conclude that Sox9 and Sox10 are required in a functionally redundant manner in oligodendrocyte precursors for PDGF-dependent survival and migration.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 40 条
[1]   The transcrintion factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6 [J].
Akiyama, H ;
Chaboissier, MC ;
Martin, JF ;
Schedl, A ;
de Crombrugghe, B .
GENES & DEVELOPMENT, 2002, 16 (21) :2813-2828
[2]   TYPE-1 ASTROCYTES AND OLIGODENDROCYTE-TYPE-2 ASTROCYTE GLIAL PROGENITORS MIGRATE TOWARD DISTINCT MOLECULES [J].
ARMSTRONG, RC ;
HARVATH, L ;
DUBOISDALCQ, ME .
JOURNAL OF NEUROSCIENCE RESEARCH, 1990, 27 (03) :400-407
[3]   CELL-DEATH IN THE OLIGODENDROCYTE LINEAGE [J].
BARRES, BA ;
HART, IK ;
COLES, HSR ;
BURNE, JF ;
VOYVODIC, JT ;
RICHARDSON, WD ;
RAFF, MC .
JOURNAL OF NEUROBIOLOGY, 1992, 23 (09) :1221-1230
[4]   Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10 [J].
Bondurand, N ;
Girard, M ;
Pingault, V ;
Lemort, N ;
Dubourg, O ;
Goossens, M .
HUMAN MOLECULAR GENETICS, 2001, 10 (24) :2783-2795
[5]   The transcription factor Sox10 is a key regulator of peripheral glial development [J].
Britsch, S ;
Goerich, DE ;
Riethmacher, D ;
Peirano, RI ;
Rossner, M ;
Nave, KA ;
Birchmeier, C ;
Wegner, M .
GENES & DEVELOPMENT, 2001, 15 (01) :66-78
[6]   Oligodendrocyte population dynamics and the role of PDGF in vivo [J].
Calver, AR ;
Hall, AC ;
Yu, WP ;
Walsh, FS ;
Heath, JK ;
Betsholtz, C ;
Richardson, WD .
NEURON, 1998, 20 (05) :869-882
[7]   Functional analysis of Sox8 and Sox9 during sex determination in the mouse [J].
Chaboissier, MC ;
Kobayashi, A ;
Vidal, VIP ;
Lützkendorf, S ;
van de Kant, HJG ;
Wegner, M ;
de Rooij, DG ;
Behringer, RR ;
Schedl, A .
DEVELOPMENT, 2004, 131 (09) :1891-1901
[8]   Regulation of cerebral cortical size by control of cell cycle exit in neural precursors [J].
Chenn, A ;
Walsh, CA .
SCIENCE, 2002, 297 (5580) :365-369
[9]   Neural crest development is regulated by the transcription factor Sox9 [J].
Cheung, M ;
Briscoe, J .
DEVELOPMENT, 2003, 130 (23) :5681-5693
[10]   The transcriptional control of trunk neural crest induction, survival, and delamination [J].
Cheung, M ;
Chaboissier, MC ;
Mynett, A ;
Hirst, E ;
Schedl, A ;
Briscoe, J .
DEVELOPMENTAL CELL, 2005, 8 (02) :179-192