Regularization of ill-posed problems in Banach spaces: convergence rates

被引:116
作者
Resmerita, E [1 ]
机构
[1] Austrian Acad Sci, RICAM, A-4040 Linz, Austria
关键词
D O I
10.1088/0266-5611/21/4/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with quantitative aspects of regularization for ill-posed linear equations in Banach spaces, when the regularization is done using a general convex penalty functional. The error estimates shown here by means of Bregman distances yield better convergences rates than those already known for maximum entropy regularization, as well as for total variation regularization.
引用
收藏
页码:1303 / 1314
页数:12
相关论文
共 24 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]   MAXIMUM-ENTROPY REGULARIZATION OF FREDHOLM INTEGRAL-EQUATIONS OF THE 1ST KIND [J].
AMATO, U ;
HUGHES, W .
INVERSE PROBLEMS, 1991, 7 (06) :793-808
[3]  
[Anonymous], 1993, CONVEX FUNCTIONS
[4]  
[Anonymous], 1986, CONVEXITY OPTIMIZATI
[5]   CONVERGENCE OF BEST ENTROPY ESTIMATES [J].
Borwein, J. M. ;
Lewis, A. S. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :191-205
[6]  
BORWEIN JM, 1996, ENTROPY MAXIMIZATION
[7]  
Bregman LM, 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200
[8]   Convergence rates of convex variational regularization [J].
Burger, M ;
Osher, S .
INVERSE PROBLEMS, 2004, 20 (05) :1411-1421
[9]  
Butnariu D., 2000, Applied optimization, V40
[10]  
BUTNARIU D, IN PRESS APPL ANAL