Cardiac gap junction channels: modulation of expression and channel properties

被引:169
作者
van Veen, TAB [1 ]
van Rijen, HVM [1 ]
Opthof, T [1 ]
机构
[1] Univ Utrecht, Med Ctr, Dept Med Physiol, Utrecht, Netherlands
关键词
cell communication; gap junctions; signal transduction; protein phosphorylation; protein kinases; remodeling;
D O I
10.1016/S0008-6363(01)00324-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In the heart, intercellular gap junction channels constructed from connexin molecules are crucial for conduction of the electric impulse. Cardiomyocytes can be interconnected by channels composed of three types of connexin proteins: Cx40, Cx43 or Cx45. In mammalian hearts, these three isoforms are regionally differently expressed and even between the species differences exist. Each of these channel-types possesses specific properties and are susceptible to modulation by various mechanisms. In this paper we compare the differences in properties of these channels as deduced from studies on transfected cells and isolated cardiomyocytes and discuss the factors involved in modulation of channel properties. Next, we evaluate the consequences of alterations in expression and modulation of channel properties for cardiac function. Therefore, we have compared reports on genetically engineered animals and discuss this information in relation to various pathophysiological disorders. (C) 2001 Elsevier Science BY. All rights reserved.
引用
收藏
页码:217 / 229
页数:13
相关论文
共 162 条
[1]   Wnt-1 regulation of connexin43 in cardiac myocytes [J].
Ai, ZW ;
Fischer, A ;
Spray, DC ;
Brown, AMC ;
Fishman, GI .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (02) :161-171
[2]  
Alcoléa S, 1999, CIRC RES, V84, P1365
[3]   GAP JUNCTION PROTEIN CONNEXIN40 IS PREFERENTIALLY EXPRESSED IN VASCULAR ENDOTHELIUM AND CONDUCTIVE BUNDLES OF RAT MYOCARDIUM AND IS INCREASED UNDER HYPERTENSIVE CONDITIONS [J].
BASTIDE, B ;
NEYSES, L ;
GANTEN, D ;
PAUL, M ;
WILLECKE, K ;
TRAUB, O .
CIRCULATION RESEARCH, 1993, 73 (06) :1138-1149
[4]   Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia [J].
Beardslee, MA ;
Lerner, DL ;
Tadros, PN ;
Laing, JG ;
Beyer, EC ;
Yamada, KA ;
Kléber, AG ;
Schuessler, RB ;
Saffitz, JE .
CIRCULATION RESEARCH, 2000, 87 (08) :656-662
[5]   Rapid turnover of connexin43 in the adult rat heart [J].
Beardslee, MA ;
Laing, JG ;
Beyer, EC ;
Saffitz, JE .
CIRCULATION RESEARCH, 1998, 83 (06) :629-635
[6]   UNIQUE CONDUCTANCE, GATING, AND SELECTIVE PERMEABILITY PROPERTIES OF GAP JUNCTION CHANNELS FORMED BY CONNEXIN40 [J].
BEBLO, DA ;
WANG, HZ ;
BEYER, EC ;
WESTPHALE, EM ;
VEENSTRA, RD .
CIRCULATION RESEARCH, 1995, 77 (04) :813-822
[7]   Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules [J].
Bevans, CG ;
Kordel, M ;
Rhee, SK ;
Harris, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (05) :2808-2816
[8]   Direct high affinity modulation of connexin channel activity by cyclic nucleotides [J].
Bevans, CG ;
Harris, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3720-3725
[9]   MUTATIONS OF THE CONNEXIN43 GAP-JUNCTION GENE IN PATIENTS WITH HEART MALFORMATIONS AND DEFECTS OF LATERALITY [J].
BRITZCUNNINGHAM, SH ;
SHAH, MM ;
ZUPPAN, CW ;
FLETCHER, WH .
NEW ENGLAND JOURNAL OF MEDICINE, 1995, 332 (20) :1323-1329
[10]   CONNEXIN40, A COMPONENT OF GAP-JUNCTIONS IN VASCULAR ENDOTHELIUM, IS RESTRICTED IN ITS ABILITY TO INTERACT WITH OTHER CONNEXINS [J].
BRUZZONE, R ;
HAEFLIGER, JA ;
GIMLICH, RL ;
PAUL, DL .
MOLECULAR BIOLOGY OF THE CELL, 1993, 4 (01) :7-20