Stepwise addition reactions in ammonia synthesis: A first principles study

被引:36
作者
Zhang, CJ [1 ]
Liu, ZP [1 ]
Hu, P [1 ]
机构
[1] Queens Univ Belfast, Sch Chem, Belfast BT9 5AG, Antrim, North Ireland
关键词
D O I
10.1063/1.1384008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalytic ammonia synthesis is believed to proceed via dissociation of N-2 and H-2 with subsequent stepwise addition reactions from an adsorbed nitrogen atom to NH3. The first step, N-2 dissociation, has been thoroughly studied. However, little is known about the microscopic details of the stepwise addition reactions. To shed light on these stepwise addition reactions, density functional theory calculations with the generalized gradient approximation are employed to investigate NHx (x=1,3) formation on Ru(0001). Transition states and reaction barriers are determined in each elementary step. It is found that the reaction barriers for stepwise addition reactions are rather high, for example, the barrier for NH hydrogenation is calculated to be 1.28 eV, which is comparable with that of N-2 dissociation. In addition, one of the stepwise addition reactions on a stepped surface is also considered. The reaction barrier is found to be much higher than that of N-2 dissociation on the same stepped surface, which indicates the importance of stepwise addition reactions in ammonia synthesis. (C) 2001 American Institute of Physics.
引用
收藏
页码:609 / 611
页数:3
相关论文
共 24 条
[1]   HETEROGENEOUS CATALYSIS OF AMMONIA-SYNTHESIS AT ROOM-TEMPERATURE AND ATMOSPHERIC-PRESSURE [J].
AIKA, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1986, 25 (06) :558-559
[2]   CO oxidation on Pt(111): An ab initio density functional theory study [J].
Alavi, A ;
Hu, PJ ;
Deutsch, T ;
Silvestrelli, PL ;
Hutter, J .
PHYSICAL REVIEW LETTERS, 1998, 80 (16) :3650-3653
[3]  
Appl M., 1999, AMMONIA PRINCIPLES I
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Density functional theory study of the interaction between CO and on a Pt surface: CO/Pt(111), O/Pt(111), and CO/O/Pt(111) [J].
Bleakley, K ;
Hu, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (33) :7644-7652
[6]   The synthesis of ammonia over a ruthenium single crystal [J].
Dahl, S ;
Taylor, PA ;
Tornqvist, E ;
Chorkendorff, I .
JOURNAL OF CATALYSIS, 1998, 178 (02) :679-686
[7]   Role of steps in N2 activation on Ru(0001) [J].
Dahl, S ;
Logadottir, A ;
Egeberg, RC ;
Larsen, JH ;
Chorkendorff, I ;
Törnqvist, E ;
Norskov, JK .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1814-1817
[8]   ADSORPTION AND DESORPTION OF AMMONIA, HYDROGEN, AND NITROGEN ON RUTHENIUM (0001) [J].
DANIELSON, LR ;
DRESSER, MJ ;
DONALDSON, EE ;
DICKINSON, JT .
SURFACE SCIENCE, 1978, 71 (03) :599-614
[9]   KINETIC SIMULATION OF AMMONIA-SYNTHESIS CATALYSIS [J].
DUMESIC, JA ;
TREVINO, AA .
JOURNAL OF CATALYSIS, 1989, 116 (01) :119-129
[10]   SURFACE SCIENCE AND CATALYSIS - STUDIES ON THE MECHANISM OF AMMONIA-SYNTHESIS - THE EMMETT,P.H. AWARD ADDRESS [J].
ERTL, G .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1980, 21 (02) :201-223