Confidence curves and improved exact confidence intervals for discrete distributions

被引:205
作者
Blaker, H [1 ]
机构
[1] Univ Oslo, Dept Math, N-0316 Oslo, Norway
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2000年 / 28卷 / 04期
关键词
acceptability; binomial distribution; hypergeometric distribution; negative binomial distribution; nested confidence regions; Poisson distribution; p-value;
D O I
10.2307/3315916
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The author describes a method for improving standard "exact" confidence intervals in discrete distributions with respect to size while retaining correct level. The binomial, negative binomial, hypergeometric, and Poisson distributions are considered explicitly. Contrary to other existing methods, the author's solution possesses a natural nesting condition: if alpha < <alpha>', the 1 - alpha' confidence interval is included in the 1 - alpha interval. Nonparametric confidence intervals for a quantile are also considered.
引用
收藏
页码:783 / 798
页数:16
相关论文
共 23 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]   IMPROVED CONFIDENCE-STATEMENTS FOR THE BINOMIAL PARAMETER [J].
ANGUS, JE ;
SCHAFER, RE .
AMERICAN STATISTICIAN, 1984, 38 (03) :189-191
[3]  
[Anonymous], 1994, Modern applied statistics with S-Plus
[5]   BINOMIAL CONFIDENCE-INTERVALS [J].
BLYTH, CR ;
STILL, HA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) :108-116
[6]   A NOTE ON CONFIDENCE-INTERVALS FOR PROPORTIONS IN FINITE POPULATIONS [J].
BUONACCORSI, JP .
AMERICAN STATISTICIAN, 1987, 41 (03) :215-218
[7]   REFINING BINOMIAL CONFIDENCE-INTERVALS [J].
CASELLA, G .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (02) :113-129
[8]   REFINING POISSON CONFIDENCE-INTERVALS [J].
CASELLA, G ;
ROBERT, C .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (01) :45-57
[9]  
Casella G., 2021, STAT INFERENCE
[10]   A PROPERTY OF SOME TYPE A REGIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (03) :472-474