Effect of turbulence on the drag and lift of a particle

被引:180
作者
Bagchi, P [1 ]
Balachandar, S [1 ]
机构
[1] Univ Illinois, Dept Theoret & Appl Mech, Urbana, IL 61801 USA
关键词
D O I
10.1063/1.1616031
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A direct numerical simulation (DNS) is used to study the effect of a freestream isotropic turbulent flow on the drag and lift forces on a spherical particle. The particle diameter is about 1.5-10 times the Kolmogorov scale, the particle Reynolds number is about 60-600, and the freestream turbulence intensity is about 10%-25%. The isotropic turbulent field considered here is stationary, i.e., frozen in time. It is shown that the freestream turbulence does not have a substantial and systematic effect on the time-averaged mean drag. The standard drag correlation based on the instantaneous or mean relative velocity results in a reasonably accurate prediction of the mean drag obtained from the DNS. However, the accuracy of prediction of the instantaneous drag decreases with increasing particle size. For the smaller particles, the low frequency oscillations in the DNS drag are well captured by the standard drag, but for the larger particles significant differences exist even for the low frequency components. Inclusion of the added-mass and history forces, computed based on the fluid velocity at the center of the particle, does not improve the prediction. Different estimates of the fluid velocity seen by the particle are examined. It is shown that the mean drag is insensitive to the fluid velocity measured at the particle center, or obtained by averaging over a fluid volume of the order of the particle size. The fluctuations diminish as the size of the averaging volume increases. The effect of increasing freestream turbulence intensity for the same particle size is studied. Fluctuations in the drag and lift forces are shown to scale with the mean drag and freestream intensity. The standard drag without the added-mass and history forces provides the best approximation to the DNS result. (C) 2003 American Institute of Physics.
引用
收藏
页码:3496 / 3513
页数:18
相关论文
共 36 条
[1]   Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers [J].
Bagchi, P ;
Balachandar, S .
JOURNAL OF FLUID MECHANICS, 2003, 481 :105-148
[2]   Shear versus vortex-induced lift force on a rigid sphere at moderate Re [J].
Bagchi, P ;
Balachandar, S .
JOURNAL OF FLUID MECHANICS, 2002, 473 :379-388
[3]   Steady planar straining flow past a rigid sphere at moderate Reynolds number [J].
Bagchi, P ;
Balachandar, S .
JOURNAL OF FLUID MECHANICS, 2002, 466 :365-407
[4]   Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re [J].
Bagchi, P ;
Balachandar, S .
PHYSICS OF FLUIDS, 2002, 14 (08) :2719-2737
[5]  
Bagchi P., 2002, THESIS U ILLINOIS UR
[6]   Particle drag coefficients in turbulent fluids [J].
Brucato, A ;
Grisafi, F ;
Montante, G .
CHEMICAL ENGINEERING SCIENCE, 1998, 53 (18) :3295-3314
[7]   EFFECTS OF TURBULENCE ON DRAG COEFFICIENTS OF SPHERES IN A SUPERCRITICAL FLOW REGIME [J].
CLAMEN, A ;
GAUVIN, WH .
AICHE JOURNAL, 1969, 15 (02) :184-&
[8]  
Clift R., 2005, Bubbles, drops, and particles
[9]  
Clift R, 1970, P CHEM C 70, V1, P14, DOI DOI 10.1016/0032-5910(71)80052-9
[10]   PARTICLE DRAG IN A DILUTE TURBULENT 2-PHASE SUSPENSION FLOW - DISCUSSION [J].
GORE, RA ;
CROWE, CT .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1990, 16 (02) :359-361