A guide to the mathematics of E-infinity Cantorian spacetime theory

被引:78
作者
El Naschie, MS [1 ]
机构
[1] Frankfurt Inst Adv Studies, Frankfurt, Germany
[2] Cairo Univ, Fac Sci, Dept Astrophys, Cairo, Egypt
关键词
D O I
10.1016/j.chaos.2004.12.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The foundation and application of E-infinity Cantorian spacetime theory are presented. E-infinity theory is a framework for understanding nature than just a new equation. In E-infinity view, spacetime us an infinite dimensional fractal that happens to have dimension (D) = 4 as the expectation value for the topological dimension. E-infinity as a framework of thinking can answer the questions regarding what is correct, one or five Higgs by stating that both are correct and depended only on the energy scale of the experiment.
引用
收藏
页码:955 / 964
页数:10
相关论文
共 31 条
[1]   El Naschie's coherence on the subquantum medium [J].
Agop, M ;
Ioannou, PD ;
Nica, P ;
Galusca, G ;
Stefan, M .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1497-1509
[2]  
[Anonymous], 1993, FRACTAL SPACETIME MI
[3]   On the intrinsic gravitational repulsion [J].
Czajko, J .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :683-700
[4]  
Donaldon S.K., 1990, OXFORD MATH MONOGRAP
[5]   On the cohomology and instantons number in E-infinity Cantorian spacetime [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :13-17
[6]   Godel universe, dualities and high energy particles in E-infinity [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :759-764
[7]  
El Naschie MS, 2004, INT J NONLIN SCI NUM, V5, P191
[8]   Light cone quantization, heterotic strings and E-infinity derivation of the number of Higgs bosons [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1931-1933
[9]   On Einstein's super symmetric tensor and the number of elementary particles of the standard model [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1521-1525
[10]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236