The mitochondrial permeability transition, release of cytochrome c and cell death -: Correlation with the duration of pore openings in situ

被引:416
作者
Petronilli, V
Penzo, D
Scorrano, L
Bernardi, P
Di Lisa, F
机构
[1] Univ Padua, Dept Biomed Sci, CNR, Unit Study Biomembranes, I-35100 Padua, Italy
[2] Univ Padua, Dept Biol Chem, I-35100 Padua, Italy
关键词
D O I
10.1074/jbc.M010604200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated the relationship between opening of the permeability transition pore (PTP), mitochondrial depolarization, cytochrome c release, and occurrence of cell death in rat hepatoma MH1C1 cells. Treatment with arachidonic acid or A23187 induces PTP opening in situ with similar kinetics, as assessed by the calcein loading-Co2+ quenching technique (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys, J. 76, 725-734), Yet depolarization, as assessed from the changes of mitochondrial tetramethylrhodamine methyl ester (TMRM) fluorescence, is rapid and extensive with arachidonic acid and slow and partial with A23187. Cyclosporin A-inhibitable release of cytochrome c and cell death correlate with the changes of TMRM fluorescence but not with those of calcein fluorescence. Since pore opening must be accompanied by depolarization, we conclude that short PTP openings are detected only by trapped calcein and may have little impact on cell viability, while changes of TMRM distribution require longer PTP openings, which cause release of cytochrome c and may result in cell death. Modulation of the open time appears to be the key element in determining the outcome of stimuli that converge on the PTP.
引用
收藏
页码:12030 / 12034
页数:5
相关论文
共 43 条
[1]   Lack of release of cytochrome c from mitochondria into cytosol early in the course of fas-mediated apoptosis of jurkat cells [J].
Adachi, S ;
Gottlieb, RA ;
Babior, BM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (31) :19892-19894
[2]   Mitochondria and cell death - Mechanistic aspects and methodological issues [J].
Bernardi, P ;
Scorrano, L ;
Colonna, R ;
Petronilli, V ;
Di Lisa, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 264 (03) :687-701
[3]  
BERNARDI P, 1992, J BIOL CHEM, V267, P2934
[4]  
BERNARDI P, 1981, J BIOL CHEM, V256, P7187
[5]   Mitochondrial transport of cations: Channels, exchangers, and permeability transition [J].
Bernardi, P .
PHYSIOLOGICAL REVIEWS, 1999, 79 (04) :1127-1155
[6]  
BERNARDI P, 1992, J BIOL CHEM, V267, P8834
[7]   The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release [J].
Bradham, CA ;
Qian, T ;
Streetz, K ;
Trautwein, C ;
Brenner, DA ;
Lemasters, JJ .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6353-6364
[8]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[9]   Structural and biochemical basis of apoptotic activation by Smac/DIABLO [J].
Chai, JJ ;
Du, CY ;
Wu, JW ;
Kyin, S ;
Wang, XD ;
Shi, YG .
NATURE, 2000, 406 (6798) :855-862
[10]   Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition [J].
Du, CY ;
Fang, M ;
Li, YC ;
Li, L ;
Wang, XD .
CELL, 2000, 102 (01) :33-42