Exact single spin flip for the Hubbard model in d=infinity

被引:24
作者
Uhrig, GS
机构
[1] Laboratoire de Physique des Solides, Université Paris-Sud, Orsay, F-91405
关键词
D O I
10.1103/PhysRevLett.77.3629
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the dynamics of a single down arrow-electron interacting with a band of up arrow-electrons can be calculated exactly in the limit of infinite dimension. The corresponding Green function is determined as a continued fraction. It is used to investigate the stability of saturated ferromagnetism and the nature of the ground state for two generic nonbipartite infinite dimensional lattices. Non-Fermi-liquid behavior is found. For certain dopings the down arrow-electron is bound to the up arrow-holes.
引用
收藏
页码:3629 / 3632
页数:4
相关论文
共 50 条
[1]   ROBUSTNESS OF A LOCAL FERMI-LIQUID AGAINST FERROMAGNETISM AND PHASE-SEPARATION [J].
ENGELBRECHT, JR ;
BEDELL, KS .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4265-4268
[2]   GROUND-STATE PHASE-DIAGRAM OF THE INFINITE DIMENSIONAL HUBBARD-MODEL - A VARIATIONAL STUDY [J].
FAZEKAS, P ;
MENGE, B ;
MULLERHARTMANN, E .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 78 (01) :69-80
[3]   SPINLESS FALICOV-KIMBALL MODEL (ANNEALED BINARY ALLOY) FROM LARGE TO SMALL DIMENSIONS [J].
FREERICKS, JK .
PHYSICAL REVIEW B, 1993, 47 (15) :9263-9272
[4]   MAGNETIC PHASE-DIAGRAM OF THE HUBBARD-MODEL [J].
FREERICKS, JK ;
JARRELL, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :186-189
[5]  
Fulde P., 1993, ELECT CORRELATIONS M, V100
[6]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[7]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[8]   EFFECT OF CORRELATION ON FERROMAGNETISM OF TRANSITION METALS [J].
GUTZWILLER, MC .
PHYSICAL REVIEW LETTERS, 1963, 10 (05) :159-&
[9]  
HANISCH T, 1993, ANN PHYS-LEIPZIG, V2, P381, DOI 10.1002/andp.19935050407
[10]  
HANISCH T, 1995, ANN PHYS-LEIPZIG, V4, P303, DOI 10.1002/andp.19955070405