Transmembrane topology of Pmt1p, a member of an evolutionarily conserved family of protein O-mannosyltransferases

被引:89
作者
Strahl-Bolsinger, S [1 ]
Scheinost, A [1 ]
机构
[1] Univ Regensburg, Lehrstuhl Zellbiol & Pflanzenphysiol, D-93040 Regensburg, Germany
关键词
D O I
10.1074/jbc.274.13.9068
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The identification of the evolutionarily conserved family of dolichyl-phosphate-D-mannose:protein O-mannosyltransferases (Pmts) revealed that protein O-mannosylation plays an essential role in a number of physiologically important processes, Strikingly, all members of the Pmt protein family share almost identical hydropathy profiles; a central hydrophilic domain is flanked by amino- and carboxyl-terminal sequences containing several putative transmembrane helices, This pattern is of particular interest because it diverges from structural models of all glycosyltransferases characterized so far. Here, we examine the transmembrane topology of Pmt1p, an integral membrane protein of the endoplasmic reticulum, from Saccharomyces cerevisiae. Structural predictions were directly tested by site-directed mutagenesis of endogenous N-glycosylation sites, by fusing a topology-sensitive monitor protein domain to carboxyl-terminal truncated versions of the Pmt1 protein and, in addition, by N-glycosylation scanning. Based on our results we propose a seven-transmembrane helical model for the yeast Pmt1p mannosyltransferase. The Pmt1p amino terminus faces the cytoplasm, whereas the carboxyl terminus faces the lumen of the endoplasmic reticulum, A large hydrophilic segment that is oriented toward the lumen of the endoplasmic reticulum is flanked by five amino-terminal and two carboxyl-terminal membrane spanning domains. We could demonstrate that this central loop is essential for the function of Pmt1p.
引用
收藏
页码:9068 / 9075
页数:8
相关论文
共 60 条
[1]   Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae [J].
Aebi, M ;
Gassenhuber, J ;
Domdey, H ;
Heesen, ST .
GLYCOBIOLOGY, 1996, 6 (04) :439-444
[2]  
[Anonymous], MOL BIOL YEAST SACCH
[3]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[4]   The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum:: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation [J].
Burda, P ;
Aebi, M .
GLYCOBIOLOGY, 1998, 8 (05) :455-462
[5]   Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: Identification of the ALG9 gene encoding a putative mannosyl transferase [J].
Burda, P ;
Heesen, ST ;
Brachat, A ;
Wach, A ;
Dusterhoft, A ;
Aebi, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) :7160-7165
[6]   A family of UDP-GalNAc: Polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation [J].
Clausen, H ;
Bennett, EP .
GLYCOBIOLOGY, 1996, 6 (06) :635-646
[7]   Hamster UDP-N-acetylglucosamine:dolichol-P N-acetylglucosamine-1-P transferase has multiple transmembrane spans and a critical cytosolic loop [J].
Dan, N ;
Middleton, RB ;
Lehrman, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30717-30724
[8]   Oligomerization of hamster UDP-GlcNAc:Dolichol-P GlcNAc-1-P transferase, an enzyme with multiple transmembrane spans [J].
Dan, N ;
Lehrman, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (22) :14214-14219
[9]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[10]   A YEAST MUTANT DEFECTIVE AT AN EARLY STAGE IN IMPORT OF SECRETORY PROTEIN PRECURSORS INTO THE ENDOPLASMIC-RETICULUM [J].
DESHAIES, RJ ;
SCHEKMAN, R .
JOURNAL OF CELL BIOLOGY, 1987, 105 (02) :633-645