Different apolipoproteins impact nanolipoprotein particle formation

被引:75
作者
Chromy, Brett A. [1 ]
Arroyo, Erin [1 ]
Blanchette, Craig D. [1 ]
Bench, Graham [1 ]
Benner, Henry [1 ]
Cappuccio, Jenny A. [1 ]
Coleman, Matthew A. [1 ]
Henderson, Paul T. [1 ]
Hinz, Angie K. [1 ]
Kuhn, Edward A. [1 ]
Pesavento, Joseph B. [1 ]
Segelke, Brent W. [1 ]
Sulchek, Todd A. [1 ]
Tarasow, Ted [1 ]
Walsworth, Vicki L. [1 ]
Hoeprich, Paul D. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
D O I
10.1021/ja074753y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spontaneous interaction of purified apolipoproteins and phospholipids results in formation of lipoprotein particles with nanometer-sized dimensions; we refer to these assemblies as nanolipoprotein particles or NLPs. These bilayer constructs can serve as suitable mimetics of biological membranes and are fully soluble in aqueous environments. We made NLPs from dimyristoylphospatidylcholine (DMPC) in combination with each of four different apolipoproteins: apoA-1, Delta-apoA-I fragment, apoE4 fragment, and apolipophorin III (apoLp-III) from the silk moth B. mori. Predominately discoidal in shape, these particles have diameters between 10 and 20 nm, share uniform heights between 4.5 and 5 nm, and can be produced in yields ranging between 40 and 60%. The particular lipoprotein, the lipid to lipoprotein ratio, and the assembly parameters determine the size and homogeneity of nanolipoprotein particles and indicate that apoA-I NLP preparations are smaller than the larger apoE422K and apolp-III NLP preparations.
引用
收藏
页码:14348 / 14354
页数:7
相关论文
共 29 条
[1]   Atomic force microscope studies of the fusion of floating lipid bilayers [J].
Abdulreda, Midhat H. ;
Moy, Vincent T. .
BIOPHYSICAL JOURNAL, 2007, 92 (12) :4369-4378
[2]  
ATKINSON D, 1986, ANNU REV BIOPHYS BIO, V15, P403
[3]   Negative and positive ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and positive ion nano-electrospray ionization quadrupole ion trap mass spectrometry of peptidoglycan fragments isolated from various Bacillus species [J].
Bacher, G ;
Körner, R ;
Atrih, A ;
Foster, SJ ;
Roepstorff, P ;
Allmaier, G .
JOURNAL OF MASS SPECTROMETRY, 2001, 36 (02) :124-139
[4]   DIFFERENTIAL SOLUBILIZATION OF MEMBRANE-LIPIDS BY DETERGENTS - COENRICHMENT OF THE SHEEP BRAIN-SEROTONIN 5-HT(1A) RECEPTOR WITH PHOSPHOLIPIDS CONTAINING PREDOMINANTLY SATURATED FATTY-ACIDS [J].
BANERJEE, P ;
DASGUPTA, A ;
CHROMY, BA ;
DAWSON, G .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 305 (01) :68-77
[5]   Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins [J].
Bayburt, TH ;
Grinkova, YV ;
Sligar, SG .
NANO LETTERS, 2002, 2 (08) :853-856
[6]   Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs [J].
Bayburt, Timothy H. ;
Grinkova, Yelena V. ;
Sligar, Stephen G. .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2006, 450 (02) :215-222
[7]   Imaging and manipulation of high-density lipoproteins [J].
Carlson, JW ;
Jonas, A ;
Sligar, SG .
BIOPHYSICAL JOURNAL, 1997, 73 (03) :1184-1189
[8]   Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size [J].
Denisov, IG ;
Grinkova, YV ;
Lazarides, AA ;
Sligar, SG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (11) :3477-3487
[9]   An N-terminal three-helix fragment of the exchangeable insect apolipoprotein apolipophorin III conserves the lipid binding properties of wild-type protein [J].
Dettloff, M ;
Weers, PMM ;
Niere, M ;
Kay, CM ;
Ryan, RO ;
Wiesner, A .
BIOCHEMISTRY, 2001, 40 (10) :3150-3157
[10]   An apolipoprotein AI mimetic peptide: Membrane interactions and the role of cholesterol [J].
Epand, RM ;
Epand, RF ;
Sayer, BG ;
Melacini, G ;
Palgulachari, MN ;
Segrest, JP ;
Anantharamaiah, GM .
BIOCHEMISTRY, 2004, 43 (17) :5073-5083