Thermodynamical limit for correlated Gaussian random energy models

被引:19
作者
Contucci, P [1 ]
Esposti, MD [1 ]
Giardinà, C [1 ]
Graffi, S [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
关键词
Covariance; Covariance Matrix; Energy Model; Thermodynamical Limit; Gaussian Random Variable;
D O I
10.1007/s00220-003-0803-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let{E-sigma(N)}(sigmais an element ofSigmaN) be a family Of \E-N\ = 2(N) centered unit Gaussian random variables defined by the covariance matrix C-N of elements C-N(sigma, tau):=Av(E-sigma(N)E-tau(N)) and H-N (sigma) = -rootNE(sigma) (N) the corresponding random Hamiltonian. Then the quenched thermodynamical limit exists if, for every decomposition N = N-1 + N-2, and all pairs (sigma, tau) is an element of Sigma(N) X Sigma(N): C-N(sigma, tau) less than or equal to N-1/N c(N1) (pi(1)(sigma), pi(1)(sigma), pi(1)(tau)) + - N-2/N c(N2) (pi(2) (pi(2)(sigma), pi(2) (tau)), where pi(k) (sigma), k = 1, 2 are the projections of or sigma is an element of Sigma(N) into Sigma(Nk). The condition is explicitly verified for the Sherrington-Kirkpatrick, the even p-spin, the Derrida REM and the Derrida-Gardner GREM models.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 13 条
[1]  
[Anonymous], PROBABILITY BANACH S
[2]   On Ruelle's probability cascades and an abstract cavity method [J].
Bolthausen, E ;
Sznitman, AS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :247-276
[3]  
BOVIER A, 2002, DERRIDAS GENERALIZED, V2
[4]  
BOVIER A, 2001, MAPHYSTO LECT NOTES, V10
[5]  
BOVIER A, 2002, DERRIDAS GENERALIZED, V3
[6]  
BOVIER A, 2002, DERRIDAS GENERALIZED, V1
[7]   SOLUTION OF THE GENERALIZED RANDOM ENERGY-MODEL [J].
DERRIDA, B ;
GARDNER, E .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (13) :2253-2274
[8]   RANDOM-ENERGY MODEL - AN EXACTLY SOLVABLE MODEL OF DISORDERED-SYSTEMS [J].
DERRIDA, B .
PHYSICAL REVIEW B, 1981, 24 (05) :2613-2626
[9]   RANDOM-ENERGY MODEL - LIMIT OF A FAMILY OF DISORDERED MODELS [J].
DERRIDA, B .
PHYSICAL REVIEW LETTERS, 1980, 45 (02) :79-82
[10]   The thermodynamic limit in mean field spin glass models [J].
Guerra, F ;
Toninelli, FL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) :71-79