Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol

被引:93
作者
Block, Maryse A. [1 ]
Douce, Roland [1 ]
Joyard, Jacques [1 ]
Rolland, Norbert [1 ]
机构
[1] Univ Grenoble 1, CNRS, Inst Rech Technol & Sci Vivant, Lab Phys Cellulaire Vegetale,CEA Grenoble, F-38054 Grenoble 9, France
关键词
plant; Arabidopsis; lipids; pigments; ions; metabolism; proteomics; bioinformatics; protein transport; signaling;
D O I
10.1007/s11120-007-9195-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells.
引用
收藏
页码:225 / 244
页数:20
相关论文
共 194 条
[1]   Two p-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts [J].
Abdel-Ghany, SE ;
Müller-Moulé, P ;
Niyogi, KK ;
Pilon, M ;
Shikanai, T .
PLANT CELL, 2005, 17 (04) :1233-1251
[2]   Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase [J].
Alawady, A ;
Reski, R ;
Yaronskaya, E ;
Grimm, B .
PLANT MOLECULAR BIOLOGY, 2005, 57 (05) :679-691
[3]   The molecular biology of plastid division in higher plants [J].
Aldridge, C ;
Maple, J ;
Moller, SG .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (414) :1061-1077
[4]   Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts [J].
Andersson, Mats X. ;
Goksor, Mattias ;
Sandelius, Anna Stina .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (02) :1170-1174
[5]   The plasma membrane and the tonoplast as major targets for phospholipid- to-glycolipid replacement and stimulation of phospholipases in the plasma membrane [J].
Andersson, MX ;
Larsson, KE ;
Tjellström, H ;
Liljenberg, C ;
Sandelius, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (30) :27578-27586
[6]   Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol [J].
Andersson, MX ;
Stridh, MH ;
Larsson, KE ;
Lijenberg, C ;
Sandelius, AS .
FEBS LETTERS, 2003, 537 (1-3) :128-132
[7]   FINAL STEP OF PHOSPHATIDIC-ACID SYNTHESIS IN PEA-CHLOROPLASTS OCCURS IN THE INNER ENVELOPE MEMBRANE [J].
ANDREWS, J ;
OHLROGGE, JB ;
KEEGSTRA, K .
PLANT PHYSIOLOGY, 1985, 78 (03) :459-465
[8]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[9]  
ARCHER EK, 1990, J BIOENERG BIOMEMBR, V22, P789
[10]   Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana [J].
Awai, K ;
Maréchal, E ;
Block, MA ;
Brun, D ;
Masuda, T ;
Shimada, H ;
Takamiya, K ;
Ohta, H ;
Joyard, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10960-10965