The melting temperature of the most common models of water

被引:356
作者
Vega, C [1 ]
Sanz, E [1 ]
Abascal, JLF [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Fis, E-28040 Madrid, Spain
关键词
D O I
10.1063/1.1862245
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The melting temperature of ice I-h for several commonly used models of water (SPC, SPC/E,TIP3P,TIP4P, TIP4P/Ew, and TIP5P) is obtained from computer simulations at p = 1 bar. Since the melting temperature of ice I-h for,the TIP4P model is now known [E. Sank, C. Vega, J. L. F. Abascal, and L. G. MacDowell, Phys. Rev. Lett. 92, 255701 (2004)], it is possible to use the Gibbs-Duhem methodology [D. Kofke, J. Chem. Phys. 98, 4149 (1993)] to evaluate the melting temperature of ice Ih for other potential models of water. We have found that the. melting temperatures of ice I-h for SPC, SPC/E, TIP3P, TIP4P, TIP4P/Ew, and TIP5P models are T = 190 K, 215 K, 146 K, 232 K, 245 K, and 274 K, respectively. The relative stability of ice I-h with respect to ice II for these models has also been considered. It turns out that for SPC, SPC/E, TIP3P, and TIP5P the stable phase at the normal melting point is ice II (so that ice I-h is not a thermodynamically stable phase for these models). For TIP4P and TIP4P/Ew, ice I-h is the stable solid phase at the standard melting point. The location of the negative charge along the H-O-H bisector appears as, a critical factor in the determination. of the relative stability between the I-h and II ice forms. The methodology proposed in this paper can be used to investigate the effect upon a coexistence line due to a change in the potential parameters. (c) 2005 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 125 条
[1]   Determination of solvation free energies by adaptive expanded ensemble molecular dynamics [J].
Åberg, KM ;
Lyubartsev, AP ;
Jacobsson, SP ;
Laaksonen, A .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (08) :3770-3776
[2]   SOLID-FLUID COEXISTENCE FOR INVERSE-POWER POTENTIALS [J].
AGRAWAL, R ;
KOFKE, DA .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :122-125
[3]   THERMODYNAMIC AND STRUCTURAL-PROPERTIES OF MODEL SYSTEMS AT SOLID-FLUID COEXISTENCE .2. MELTING AND SUBLIMATION OF THE LENNARD-JONES SYSTEM [J].
AGRAWAL, R ;
KOFKE, DA .
MOLECULAR PHYSICS, 1995, 85 (01) :43-59
[4]   THERMODYNAMIC AND STRUCTURAL-PROPERTIES OF MODEL SYSTEMS AT SOLID-FLUID COEXISTENCE .1. FCC AND BCC SOFT SPHERES [J].
AGRAWAL, R ;
KOFKE, DA .
MOLECULAR PHYSICS, 1995, 85 (01) :23-42
[5]   MOLECULAR-DYNAMICS SIMULATION OF THE ORTHOBARIC DENSITIES AND SURFACE-TENSION OF WATER [J].
ALEJANDRE, J ;
TILDESLEY, DJ ;
CHAPELA, GA .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (11) :4574-4583
[6]   Effects of the Ewald sum on the free energy of the extended simple point charge model for water [J].
Arbuckle, BW ;
Clancy, P .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (12) :5090-5098
[7]   A molecular dynamics study of ices III and V using TIP4P and TIP5P water models [J].
Ayala, RB ;
Tchijov, V .
CANADIAN JOURNAL OF PHYSICS, 2003, 81 (1-2) :11-16
[8]   Melting and pressure-induced amorphization of quartz [J].
Badro, J ;
Gillet, P ;
Barrat, JL .
EUROPHYSICS LETTERS, 1998, 42 (06) :643-648
[9]   PHASE-EQUILIBRIA IN EXTENDED SIMPLE POINT-CHARGE ICE-WATER SYSTEMS [J].
BAEZ, LA ;
CLANCY, P .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (22) :9744-9755
[10]  
Ball P., 2001, Life's Matrix: A Biography of Water