The glycine decarboxylase complex is not essential for the cyanobacterium Synechocystis sp strain PCC 6803

被引:39
作者
Hagemann, M [1 ]
Vinnemeier, J [1 ]
Oberpichler, I [1 ]
Boldt, R [1 ]
Bauwe, H [1 ]
机构
[1] Univ Rostock, FB Biowissenschaften Pflanzenphysiol, D-18051 Rostock, Germany
关键词
cyanobacteria; glycine resistance; inorganic carbon; mutation; gene expression;
D O I
10.1055/s-2004-830445
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In order to investigate the metabolic importance of glycine decarboxylase (GIDC) in cyanobacteria, mutants were generated defective in the genes encoding GDC subunits and the serine hydroxymethyl-transferase (SHMT). It was possible to mutate the genes for GDC subunits P, T, or H protein in the cyanobacterial model strain Synechocystis sp. IPCC 6803, indicating that GDC is not necessary for cell viability under standard conditions. In contrast, the SHMT coding gene was found to be essential. Almost no changes in growth, pigmentation, or photosynthesis were detected in the GDC subunit mutants, regardless of whether or not they were cultivated at ambient or high CO2 concentrations. The mutation of GDC led to an increased glycine/serine ratio in the mutant cells. Furthermore, supplementation of the medium with low glycine concentrations was toxic for the mutants but not for wild type cells. Conditions stimulating photorespiration in plants, such as low CO2 concentrations, did not induce but decrease the expression of the GDC and SHMT genes in Synechocystis. It appears that, in contrast to heterotrophic bacteria and plants, GDC is dispensable for Synechocystis and possibly other cyanobacteria.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 34 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   Genetic manipulation of glycine decarboxylation [J].
Bauwe, H ;
Kolukisaoglu, Ü .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (387) :1523-1535
[4]   MEASUREMENT OF PHOTO-RESPIRATION IN ALGAE [J].
BIRMINGHAM, BC ;
COLEMAN, JR ;
COLMAN, B .
PLANT PHYSIOLOGY, 1982, 69 (01) :259-262
[5]   PATHWAYS OF GLYCOLLATE METABOLISM IN BLUE-GREEN-ALGA ANABAENA-CYLINDRICA [J].
CODD, GA ;
STEWART, WDP .
ARCHIV FUR MIKROBIOLOGIE, 1973, 94 (01) :11-28
[7]   The glycine decarboxylase system:: a fascinating complex [J].
Douce, R ;
Bourguignon, J ;
Neuburger, M ;
Rébeillé, F .
TRENDS IN PLANT SCIENCE, 2001, 6 (04) :167-176
[8]   Characterization of a gene encoding dihydrolipoamide dehydrogenase of the cyanobacterium Synechocystis sp. Strain PCC 6803 [J].
Engels, A ;
Pistorius, EK .
MICROBIOLOGY-SGM, 1997, 143 :3543-3553
[9]   Phloem-specific expression of pyrophosphatase inhibits long-distance transport of carbohydrates and amino acids in tobacco plants [J].
Geigenberger, P ;
Lerchl, J ;
Stitt, M ;
Sonnewald, U .
PLANT CELL AND ENVIRONMENT, 1996, 19 (01) :43-55
[10]   STOMATAL RESPONSE TO DRYING SOIL IN RELATION TO CHANGES IN THE XYLEM SAP COMPOSITION OF HELIANTHUS-ANNUUS .1. THE CONCENTRATION OF CATIONS, ANIONS, AMINO-ACIDS IN, AND PH OF, THE XYLEM SAP [J].
GOLLAN, T ;
SCHURR, U ;
SCHULZE, ED .
PLANT CELL AND ENVIRONMENT, 1992, 15 (05) :551-559