Biomimetic materials for tissue engineering

被引:1195
作者
Shin, H [1 ]
Jo, S [1 ]
Mikos, AG [1 ]
机构
[1] Rice Univ, Dept Bioengn, Houston, TX 77251 USA
关键词
biomimetic scaffolds; bulk and surface modification; receptor-ligand interactions; tissue engineering;
D O I
10.1016/S0142-9612(03)00339-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The development of biomaterials for tissue engineering applications has recently focused on the design of biomimetic materials that are capable of eliciting specific cellular responses and directing new tissue formation mediated by biomolecular recognition, which can be manipulated by altering design parameters of the material. Biomolecular recognition of materials by cells has been achieved by surface and bulk modification of biomaterials via chemical or physical methods with bioactive molecules such as a native long chain of extracellular matrix (ECM) proteins as well as short peptide sequences derived from intact ECM proteins that can incur specific interactions with cell receptors. The biomimetic materials potentially mimic many roles of ECM in tissues. For example, biomimetic scaffolds can provide biological cues for cell-matrix interactions to promote tissue growth, and the incorporation of peptide sequences into materials can also make the material degradable by specific protease enzymes. This review discusses the surface and bulk modification of biomaterials with cell recognition molecules to design biomimetic materials for tissue engineering. The criteria to design biomimetic materials such as the concentration and spatial distribution of modified bioactive molecules are addressed. Recent advances for the development of biomimetic materials in bone, nerve, and cardiovascular tissue engineering are also summarized. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4353 / 4364
页数:12
相关论文
共 113 条
[1]   Osteoblast adhesion on biomaterials [J].
Anselme, K .
BIOMATERIALS, 2000, 21 (07) :667-681
[2]   Growth factor delivery for tissue engineering [J].
Babensee, JE ;
McIntire, LV ;
Mikos, AG .
PHARMACEUTICAL RESEARCH, 2000, 17 (05) :497-504
[3]   Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression [J].
Bearinger, JP ;
Castner, DG ;
Healy, KE .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1998, 9 (07) :629-652
[4]   Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide [J].
Behravesh, E ;
Zygourakis, K ;
Mikos, AG .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 65A (02) :260-270
[5]   LAMININ OLIGOPEPTIDE DERIVATIZED AGAROSE GELS ALLOW 3-DIMENSIONAL NEURITE EXTENSION IN-VITRO [J].
BELLAMKONDA, R ;
RANIERI, JP ;
AEBISCHER, P .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 41 (04) :501-509
[6]   Tissue engineering via local gene delivery [J].
Bonadio, J .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2000, 78 (06) :303-311
[7]  
Borkenhagen M, 1998, J BIOMED MATER RES, V40, P392, DOI 10.1002/(SICI)1097-4636(19980603)40:3<392::AID-JBM8>3.3.CO
[8]  
2-4
[9]   Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration [J].
Bryan, DJ ;
Holway, AH ;
Wang, KK ;
Silva, AE ;
Trantolo, DJ ;
Wise, D ;
Summerhayes, IC .
TISSUE ENGINEERING, 2000, 6 (02) :129-138
[10]  
Cook AD, 1997, J BIOMED MATER RES, V35, P513