Anisotropic heat conduction effects in proton-exchange membrane fuel cells

被引:27
作者
Bapat, Chaitanya J. [1 ]
Thyneill, Stefan T. [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2007年 / 129卷 / 09期
关键词
proton-exchange membrane fuel cell (PEMFC); heat transfer; anisotropy; contact resistance;
D O I
10.1115/1.2712478
中图分类号
O414.1 [热力学];
学科分类号
摘要
The focus of this work is to study the effects of anisotropic thermal conductivity and thermal contact conductance on the overall temperature distribution inside a fuel cell. The gas-diffusion layers and membrane are expected to possess an anisotropic thermal conductivity, whereas a contact resistance is present between the current collectors and gas-diffusion layers. A two-dimensional single phase model is used to capture transport phenomena inside the cell. From the use of this model, it is predicted that the maximum temperatures inside the cell can be appreciably higher than the operating temperature Of the cell. A high value of the in-plane thermal conductivity for the gas-diffusion layers was seen to be essential for achieving smaller temperature gradients. However the maximum improvement in the heat transfer characteristics of the fuel cell brought about by increasing the in-plane thermal conductivity is limited by the presence of a finite thermal contact conductance at the diffusion layer/current collector interface. This was determined to be even more important for thin gas-diffusion layers. Anisotropic thermal conductivity of the membrane, however did not have a significant impact on the temperature distribution. The. thermal contact conductance at the diffusion layer/current collector interface strongly affected the temperature distribution inside the cell.
引用
收藏
页码:1109 / 1118
页数:10
相关论文
共 55 条
[1]   Fuel economy of hydrogen fuel cell vehicles [J].
Ahluwalia, RK ;
Wang, X ;
Rousseau, A ;
Kumar, R .
JOURNAL OF POWER SOURCES, 2004, 130 (1-2) :192-201
[2]  
[Anonymous], 1980, SERIES COMPUTATIONAL, DOI [DOI 10.1201/9781482234213, 10.1201/9781482234213]
[3]   A general formulation for a mathematical PEM fuel cell model [J].
Baschuk, JJ ;
Li, XG .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :134-153
[4]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[5]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[6]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[7]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[8]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[9]   Simulation of a polymer electrolyte fuel cell electrode [J].
Bevers, D ;
Wohr, M ;
Yasuda, K ;
Oguro, K .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (11) :1254-1264
[10]   Analysis of a two-phase non-isothermal model for a PEFC [J].
Birgersson, E ;
Noponen, M ;
Vynnycky, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A1021-A1034