Electrochemical Impedance Analysis of a Hierarchical CuO Electrode Composed of Self-Assembled Nanoplates

被引:142
作者
Xiang, J. Y.
Tu, J. P. [1 ]
Qiao, Y. Q.
Wang, X. L.
Zhong, J.
Zhang, D.
Gu, C. D.
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
关键词
LITHIUM-ION BATTERIES; NANOSTRUCTURED CUO; PHASE-TRANSITIONS; CATHODE MATERIALS; CARBON NANOTUBES; FILM ELECTRODES; RATE CAPABILITY; LI BATTERIES; INTERCALATION; ANODES;
D O I
10.1021/jp108261t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although 3d transition metal oxides (TMOs) are well-known as promising anodes for Li ion batteries, little, is known about the mechanism of electrode process kinetics. In this work, impedance behavior of the flower-like hierarchical CuO electrode is first investigated to understand the kinetics that influences the performances of TMOs toward lithium. The electrochemical impedance spectra are measured at different discharge and charge states during cycling. A modified two-parallel diffusion path model is set up to account for the Nyquist plots. The kinetic parameters in the model that represent the migration of lithium ions through surface-passivating film, charge transfer on active material/electrolyte interfaces, and diffusion of lithium ions in solid material are discussed in detail. On the basis of the analysis of the variation of kinetic parameters, several promising approaches are proposed to improve the electrochemical performances of copper oxides, which can also be applicable to all the 3d transition metal oxides.
引用
收藏
页码:2505 / 2513
页数:9
相关论文
共 34 条
[1]  
AURBACH D, 1999, J POWER SOURCES, V95, P81
[2]   Doubling exponent models for the analysis of porous film electrodes by impedance.: Relaxation of TiO2 nanoporous in aqueous solution [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Fabregat-Santiago, F ;
Ferriols, NS ;
Bogdanoff, P ;
Pereira, EC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (10) :2287-2298
[3]   Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons [J].
Chang, YC ;
Sohn, HJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :50-58
[4]   Preparation and characterization of LiMn2O4 spinel nanoparticles as cathode materials in secondary Li batteries [J].
Curtis, CJ ;
Wang, JX ;
Schulz, DL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A590-A598
[5]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971
[6]   Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries [J].
Gachot, Gregory ;
Grugeon, Sylvie ;
Armand, Michel ;
Pilard, Serge ;
Guenot, Pierre ;
Tarascon, Jean-Marie ;
Laruelle, Stephane .
JOURNAL OF POWER SOURCES, 2008, 178 (01) :409-421
[7]   Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J].
Gao, XP ;
Bao, JL ;
Pan, GL ;
Zhu, HY ;
Huang, PX ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (18) :5547-5551
[8]   Net-structured NiO-C nanocomposite as Li-intercalation electrode material [J].
Huang, X. H. ;
Tu, J. P. ;
Zhang, C. Q. ;
Xiang, J. Y. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :1180-1184
[9]   Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries [J].
Huang, X. H. ;
Tu, J. P. ;
Xia, X. H. ;
Wang, X. L. ;
Xiang, J. Y. ;
Zhang, L. ;
Zhou, Y. .
JOURNAL OF POWER SOURCES, 2009, 188 (02) :588-591
[10]   Kinetics of electrochemically induced phase transitions in ion-insertion electrodes and the chemical diffusion coefficient [J].
Levi, M. D. ;
Aurbach, D. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (04) :409-420