SVD based initialization: A head start for nonnegative matrix factorization

被引:459
作者
Boutsidis, C. [1 ]
Gallopoulos, E. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] Univ Patras, Comp Engn & Informat Dept, GR-26500 Patras, Greece
关键词
NMF; sparse NMF; SVD; nonnegative matrix factorization; singular value decomposition; Perron-Frobenius; low rank; structured initialization; sparse factorization;
D O I
10.1016/j.patcog.2007.09.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe Nonnegative Double Singular Value Decomposition (NNDSVD), a new method designed to enhance the initialization stage of nonnegative matrix factorization (NMF). NNDSVD can readily be combined with existing NMF algorithms. The basic algorithm contains no randomization and is based on two SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting partial SVD factors utilizing an algebraic property of unit rank matrices. Simple practical variants for NMF with dense factors are described. NNDSVD is also well suited to initialize NMF algorithms with sparse factors. Many numerical examples suggest that NNDSVD leads to rapid reduction of the approximation error of many NMF algorithms. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1350 / 1362
页数:13
相关论文
共 47 条
[1]  
Aharon M, 2005, P SPIE C WAV JUL, P327
[2]   IRBL: An implicitly restarted block-lanczos method for large-scale Hermitian eigenproblems [J].
Baglama, J ;
Calvetti, D ;
Reichel, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05) :1650-1677
[3]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[4]   Algorithms and applications for approximate nonnegative matrix factorization [J].
Berry, Michael W. ;
Browne, Murray ;
Langville, Amy N. ;
Pauca, V. Paul ;
Plemmons, Robert J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :155-173
[5]   LARGE-SCALE SPARSE SINGULAR VALUE COMPUTATIONS [J].
BERRY, MW .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1992, 6 (01) :13-49
[6]  
Bertsekas D., 1999, NONLINEAR PROGRAMMIN
[7]   On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices [J].
Catral, M ;
Han, LX ;
Neumann, M ;
Plemmons, RJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :107-126
[8]  
*CBCL, FAC DAT
[9]  
Chu MT., 2004, OPTIMALITY COMPUTATI
[10]  
CICHOCKI A, NMFLAB MATLAB TOOLBO