Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses

被引:405
作者
Song, CP
Agarwal, M
Ohta, M
Guo, Y
Halfter, U
Wang, PC
Zhu, JK [1 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
[2] Henan Univ, Lab Plant Stress Biol, Dept Biol, Kaifeng 475001, Peoples R China
[3] Univ Calif Riverside, Inst Integrat Genome Biol, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
关键词
D O I
10.1105/tpc.105.033043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The phytohormone abscisic acid ( ABA) modulates the expression of many genes important to plant growth and development and to stress adaptation. In this study, we found that an APETALA2/ EREBP- type transcription factor, AtERF7, plays an important role in ABA responses. AtERF7 interacts with the protein kinase PKS3, which has been shown to be a global regulator of ABA responses. AtERF7 binds to the GCC box and acts as a repressor of gene transcription. AtERF7 interacts with the Arabidopsis thaliana homolog of a human global corepressor of transcription, AtSin3, which in turn may interact with HDA19, a histone deacetylase. The transcriptional repression activity of AtERF7 is enhanced by HDA19 and AtSin3. Arabidopsis plants overexpressing AtERF7 show reduced sensitivity of guard cells to ABA and increased transpirational water loss. By contrast, AtERF7 and AtSin3 RNA interference lines show increased sensitivity to ABA during germination. Together, our results suggest that AtERF7 plays an important role in ABA responses and may be part of a transcriptional repressor complex and be regulated by PKS3.
引用
收藏
页码:2384 / 2396
页数:13
相关论文
共 59 条
[1]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[2]   Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells [J].
Allen, GJ ;
Kuchitsu, K ;
Chu, SP ;
Murata, Y ;
Schroeder, JI .
PLANT CELL, 1999, 11 (09) :1785-1798
[3]   From milliseconds to millions of years: guard cells and environmental responses [J].
Assmann, SM ;
Wang, XQ .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (05) :421-428
[4]   OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells [J].
Assmann, SM .
TRENDS IN PLANT SCIENCE, 2003, 8 (04) :151-153
[5]   MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3 [J].
AYER, DE ;
LAWRENCE, QA ;
EISENMAN, RN .
CELL, 1995, 80 (05) :767-776
[6]   A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis [J].
Brown, RL ;
Kazan, K ;
McGrath, KC ;
Maclean, DJ ;
Manners, JM .
PLANT PHYSIOLOGY, 2003, 132 (02) :1020-1032
[7]   Solution structure of the interacting domains of the Mad-Sin3 complex: Implications for recruitment of a chromatin-modifying complex [J].
Brubaker, K ;
Cowley, SM ;
Huang, K ;
Loo, L ;
Yochum, GS ;
Ayer, DE ;
Eisenman, RN ;
Radhakrishnan, I .
CELL, 2000, 103 (04) :655-665
[8]   Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J].
Chuang, CF ;
Meyerowitz, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4985-4990
[9]   REPRESSION VERSUS ACTIVATION IN THE CONTROL OF GENE-TRANSCRIPTION [J].
COWELL, IG .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (01) :38-42
[10]   A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis [J].
Cutler, S ;
Ghassemian, M ;
Bonetta, D ;
Cooney, S ;
McCourt, P .
SCIENCE, 1996, 273 (5279) :1239-1241