Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

被引:147
作者
Ajuria, Jon [1 ]
Redondo, Edurne [1 ]
Arnaiz, Maria [1 ]
Mysyk, Roman [1 ]
Rojo, Teofilo [1 ,2 ]
Goikolea, Eider [1 ]
机构
[1] CIC Energigune, Albert Einstein 48,Alava Technol Pk, Vitoria 01510, Spain
[2] Univ Basque Country UPV EHU, Dept Inorgan Chem, POB 644, Bilbao 48080, Spain
关键词
Hard carbon; Activated carbon; Supercapacitor; EDLC; Lithium ion capacitor; Sodium ion capacitor; HARD-CARBON; PERFORMANCE; CHALLENGES; ELECTRODES; NANOTUBES; BATTERIES; ANODE;
D O I
10.1016/j.jpowsour.2017.04.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li-and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 40 条
[1]   An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode [J].
Aida, Taira ;
Yamada, Koji ;
Morita, Masayuki .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (12) :A534-A536
[2]  
Alami S.B.D., 2010, THESIS
[3]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[4]  
[Anonymous], 1987, OUR COMMON FUTURE
[5]   Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes [J].
Cao, W. J. ;
Zheng, J. P. .
JOURNAL OF POWER SOURCES, 2012, 213 :180-185
[6]   Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Li, Xi-Li ;
Liu, Hai-Jing ;
Xiong, Huan-Ming ;
Zhang, Ping-Wei ;
Xia, Yong-Yao .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :A692-A697
[7]   Electrochemical Kinetics of Nanostructured Nb2O5 Electrodes [J].
Come, Jeremy ;
Augustyn, Veronica ;
Kim, Jong Woung ;
Rozier, Patrick ;
Taberna, Pierre-Louis ;
Gogotsi, Pavel ;
Long, Jeffrey W. ;
Dunn, Bruce ;
Simon, Patrice .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) :A718-A725
[8]  
Denholm P., 2010, NRELTP6A247187
[9]   Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Cui, Kai ;
Karpuzov, Dimitre ;
Tan, Xuehai ;
Kohandehghan, Alireza ;
Mitlin, David .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) :941-955
[10]   Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries [J].
Du Pasquier, A ;
Plitz, I ;
Gural, J ;
Badway, F ;
Amatucci, GG .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :160-170