Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast

被引:80
作者
Singer, JM [1 ]
Shaw, JM [1 ]
机构
[1] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA
关键词
D O I
10.1073/pnas.1232343100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The evolutionarily conserved Mdm20 protein (Mdm20p) plays an important role in tropomyosin-F-actin interactions that generate actin filaments and cables in budding yeast. However, Mdm20p is not a structural component of actin filaments or cables, and its exact function in cable stability has remained a mystery. Here, we show that cells lacking Mdm20p fail to N-terminally acetylate Tpm1p, an abundant form of tropomyosin that binds and stabilizes actin filaments and cables. The F-actin-binding activity of unacetylated Tpm1p is reduced severely relative to the acetylated form. These results are complemented by the recent report that Mdm20p copurifies with one of three acetyltransferases in yeast, the NatB complex. We present genetic evidence that Mdm20p functions cooperatively with Nat3p, the catalytic subunit of the NatB acetyltransferase. These combined results strongly suggest that Mdm20p-dependent, N-terminal acetylation of Tpm1p by the NatB complex is required for Tpm1p association with, and stabilization of, actin filaments and cables.
引用
收藏
页码:7644 / 7649
页数:6
相关论文
共 44 条
[1]   REQUIREMENT OF YEAST FIMBRIN FOR ACTIN ORGANIZATION AND MORPHOGENESIS INVIVO [J].
ADAMS, AEM ;
BOTSTEIN, D ;
DRUBIN, DG .
NATURE, 1991, 354 (6352) :404-408
[2]   Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae [J].
Asakura, T ;
Sasaki, T ;
Nagano, F ;
Satoh, A ;
Obaishi, H ;
Nishioka, H ;
Imamura, H ;
Hotta, K ;
Tanaka, K ;
Nakanishi, H ;
Takai, Y .
ONCOGENE, 1998, 16 (01) :121-130
[3]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[4]   The yeast V159N actin mutant reveals roles for actin dynamics in vivo [J].
Belmont, LD ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1998, 142 (05) :1289-1299
[5]   Mitochondrial inheritance in budding yeast [J].
Boldogh, IR ;
Yang, HC ;
Pon, LA .
TRAFFIC, 2001, 2 (06) :368-374
[6]   Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast [J].
Boldogh, IR ;
Yang, HC ;
Nowakowski, WD ;
Karmon, SL ;
Hays, LG ;
Yates, JR ;
Pon, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :3162-3167
[7]   Deciphering the design of the tropomyosin molecule [J].
Brown, JH ;
Kim, KH ;
Jun, G ;
Greenfield, NJ ;
Dominguez, R ;
Volkmann, N ;
Hitchcock-DeGregori, SE ;
Cohen, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8496-8501
[8]   Interaction in vivo and in vitro between the yeast fimbrin, SAC6P, and a polymerization-defective yeast actin (V266G and L267G) [J].
Cheng, DM ;
Marner, J ;
Rubenstein, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (50) :35873-35880
[9]  
CHO YJ, 1990, J BIOL CHEM, V265, P538
[10]  
COOK RK, 1993, J BIOL CHEM, V268, P2410