High Temperature Performance of Surface-Treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 Layered Oxide

被引:73
作者
Deng, H. [1 ]
Belharouak, I. [1 ]
Yoon, C. S. [2 ]
Sun, Y. -K. [3 ,4 ]
Amine, K. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea
[3] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea
[4] Hanyang Univ, Dept WCU Energy Engn, Seoul 133791, South Korea
关键词
CATHODE MATERIAL; LITHIUM; CAPACITY; ELECTRODES; BATTERIES;
D O I
10.1149/1.3467855
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical performance of pristine and AlF3-coated Li1.1Ni0.15Co0.1Mn0.55O1.95 cathodes is reported for cells cycled at 25 and 55 degrees C. In a half-cell configuration, a nanolayer coating of AlF3 on the Li1.1Ni0.15Co0.1Mn0.55O1.95 stabilizes the capacity on cycling. However, in cell tests with metallic lithium anodes, the initial coulombic efficiency decreased slightly at both 25 and 55 degrees C for AlF3-coated Li1.1Ni0.15Co0.1Mn0.55O1.95 in comparison to the pristine material. For cells constructed with graphite instead of lithium anodes, the capacity stability improved with cycling for the coated cathode materials. Transition- metal dissolution was more pronounced for the AlF3-coated sample when stored at 55 degrees C in electrolytes. For both the pristine and AlF3-coated samples, there was no extra capacity loss due to the elevated temperature. Around 10% capacity gain of the cathode materials at elevated temperature is assumed to be due to improved thermodynamic activation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3467855] All rights reserved.
引用
收藏
页码:A1035 / A1039
页数:5
相关论文
共 20 条
[1]   Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells [J].
Abraham, D. P. ;
Reynolds, E. M. ;
Schultz, P. L. ;
Jansen, A. N. ;
Dees, D. W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (08) :A1610-A1616
[2]   The elevated temperature performance of the LiMn2O4/C system:: failure and solutions [J].
Amatucci, G ;
Du Pasquier, A ;
Blyr, A ;
Zheng, T ;
Tarascon, JM .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :255-271
[3]   Lithium nickelate electrodes with enhanced high-temperature performance and thermal stability [J].
Arai, H ;
Tsuda, M ;
Sakurai, Y .
JOURNAL OF POWER SOURCES, 2000, 90 (01) :76-81
[4]   On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives [J].
Aurbach, D ;
Markovsky, B ;
Rodkin, A ;
Levi, E ;
Cohen, YS ;
Kim, HJ ;
Schmidt, M .
ELECTROCHIMICA ACTA, 2002, 47 (27) :4291-4306
[5]   Effect of Cobalt Incorporation and Lithium Enrichment in Lithium Nickel Manganese Oxides [J].
Deng, H. ;
Belharouak, I. ;
Wu, H. ;
Dambournet, D. ;
Amine, K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A776-A781
[6]   Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries [J].
Deng, Haixia ;
Belharouak, Ilias ;
Cook, Russel E. ;
Wu, Huiming ;
Sun, Yang-Kook ;
Amine, Khalil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A447-A452
[7]   LixNi0.25Mn0.75Oy (0.5 ≤ x ≤ 2, 2 ≤ y ≤ 2.75) compounds for high-energy lithium-ion batteries [J].
Deng, Haixia ;
Belharouak, Ilias ;
Sun, Yang-Kook ;
Amine, Khalil .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (26) :4510-4516
[8]   Anomalous capacity and cycling stability of xLi2MnO3•(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C [J].
Johnson, Christopher S. ;
Li, Naichao ;
Lefief, Christina ;
Thackeray, Michael M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :787-795
[9]   The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes [J].
Johnson, CS ;
Kim, JS ;
Lefief, C ;
Li, N ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) :1085-1091
[10]   Electrochemical and ex situ X-ray study of Li-(Li0.2Ni0.2Mn0.6)O2 cathode material for Li secondary batteries [J].
Kang, SH ;
Sun, YK ;
Amine, K .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A183-A186