Dopamine depletion increases the power and coherence of β-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat

被引:291
作者
Sharott, A
Magill, PJ
Harnack, D
Kupsch, A
Meissner, W
Brown, P
机构
[1] Inst Neurol, Sobell Dept Motor Neurosci & Movement Disorders, London WC1N 3BG, England
[2] Univ Oxford, MRC, Anat Neuropharmacol Unit, Oxford OX1 3TH, England
[3] Humboldt Univ, Dept Neurol, Berlin, Germany
[4] Univ Victor Segalen, CNRS, UMR 5543, Neurophysiol Lab, Bordeaux, France
关键词
basal ganglia; beta band; Parkinson's disease; synchronization;
D O I
10.1111/j.1460-9568.2005.03973.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Local field potentials (LFPs) recorded from the subthalamic nucleus (STN) of untreated patients implanted with stimulation electrodes for the treatment of Parkinson's disease (PD) demonstrate strong coherence with the cortical electroencephalogram over the beta-frequency range (15-30 Hz). However, studies in animal models of PD emphasize increased temporal coupling in cortico-basal ganglia circuits at substantially lower frequencies, undermining the potential usefulness of these models. Here we show that 6-hydroxydopamine (6-OHDA) lesions of midbrain dopamine neurons are associated with significant increases in the power and coherence of beta-frequency oscillatory activity present in LFPs recorded from frontal cortex and STN of awake rats, as compared with the healthy animal. Thus, the pattern of synchronization between population activity in the STN and cortex in the 6-OHDA-lesioned rodent model of PD closely parallels that seen in the parkinsonian human. The peak frequency of coherent activity in the beta-frequency range was increased in lesioned animals during periods of spontaneous and sustained movement. Furthermore, administration of the dopamine receptor agonist apomorphine to lesioned animals suppressed beta-frequency oscillations, and increased coherent activity at higher frequencies in the cortex and STN, before producing the rotational behaviour indicative of successful lesion. Taken together, these results support a crucial role for dopamine in the modulation of population activity in cortico-basal ganglia circuits, whereby dopaminergic mechanisms effectively filter out synchronized, rhythmic activity at beta-frequencies at the systems level, and shift temporal couplings in these circuits to higher frequencies. These changes may be important in regulating movement.
引用
收藏
页码:1413 / 1422
页数:10
相关论文
共 64 条
[1]  
Aldridge JW, 1998, J NEUROSCI, V18, P2777
[2]   Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation [J].
Baker, SN ;
Olivier, E ;
Lemon, RN .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 501 (01) :225-241
[3]   THE PRIMATE SUBTHALAMIC NUCLEUS .2. NEURONAL-ACTIVITY IN THE MPTP MODEL OF PARKINSONISM [J].
BERGMAN, H ;
WICHMANN, T ;
KARMON, B ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :507-520
[4]   Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates [J].
Bergman, H ;
Feingold, A ;
Nini, A ;
Raz, A ;
Slovin, H ;
Abeles, M ;
Vaadia, E .
TRENDS IN NEUROSCIENCES, 1998, 21 (01) :32-38
[5]   Oscillatory entrainment of striatal neurons in freely moving rats [J].
Berke, JD ;
Okatan, M ;
Skurski, J ;
Eichenbaum, HB .
NEURON, 2004, 43 (06) :883-896
[6]   Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network [J].
Bevan, MD ;
Magill, PJ ;
Terman, D ;
Bolam, JP ;
Wilson, CJ .
TRENDS IN NEUROSCIENCES, 2002, 25 (10) :525-531
[7]   From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control [J].
Boraud, T ;
Bezard, E ;
Bioulac, B ;
Gross, CE .
PROGRESS IN NEUROBIOLOGY, 2002, 66 (04) :265-283
[8]   Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson's disease [J].
Brown, P .
MOVEMENT DISORDERS, 2003, 18 (04) :357-363
[9]   What do the basal ganglia do? [J].
Brown, P ;
Marsden, CD .
LANCET, 1998, 351 (9118) :1801-1804
[10]   Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease [J].
Brown, P ;
Oliviero, A ;
Mazzone, P ;
Insola, A ;
Tonali, P ;
Di Lazzaro, V .
JOURNAL OF NEUROSCIENCE, 2001, 21 (03) :1033-1038