Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by Erlotinib (Tarceva)

被引:334
作者
Chinnaiyan, P
Huang, SM
Vallabhaneni, G
Armstrong, E
Varambally, S
Tomlins, SA
Chinnaiyan, AM
Harari, PM
机构
[1] Univ Wisconsin, Dept Human Oncol, Madison, WI USA
[2] Univ Michigan, Sch Med, Ann Arbor, MI USA
[3] Univ Wisconsin, Dept Human Oncol, Madison, WI USA
关键词
D O I
10.1158/0008-5472.CAN-04-3547
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Erlotinib (Tarceva) is an orally available HER1 (epidermal growth factor receptor, FGFR) tyrosine kinase inhibitor advancing through clinical trials for the treatment of a range of human malignancies. In this study, we examine the capacity of erlotinib to modulate radiation response and investigate specific mechanisms underlying these interactions in human tumor cell lines and xenografts. The impact of erlotinib on cell cycle kinetics was analyzed using flow cytometry, and the impact on apoptosis was evaluated via fluorescein-labeled pan-caspase inhibition and poly(ADP-ribose) polymerase cleavage. Radiation-induced EGFR autophosphorylation and Rad51 expression were examined by Western blot ana-lysis. Radiation survival was analyzed using a clonogenic assay and assessment of in vivo tumor growth was done using a mouse xenograft model system. Microarray studies were carried out using 20 K human cDNA microarray and select genes were validated using quantitative reverse transcription-PCR (RTPCR). Independently, erlotinib and radiation induce accumulation of tumor cells in G(1) and G(2)-M phase, respectively, with a reduction of cells in S phase. When combined with radiation, erlotinib promotes a further reduction in S-phase fraction. Erlotinib enhances the induction of apoptosis, inhibits EGFR autophosphorylation and Rad51 expression following radiation exposure, and promotes an increase in radiosensitivity. Tumor xenograft studies confirm that systemic administration of erlotinib results in profound tumor growth inhibition when combined with radiation. cDNA microarray analysis assessing genes differentially regulated by erlotinib following radiation exposure identifies a diverse set of genes deriving from several functional classes. Validation is confirmed for several specific genes that may influence radiosensitization by erlotinib including Egr-1, CXCL1, and IL-1 beta. These results identify the capacity of erlotinib to enhance radiation response at several levels, including cell cycle arrest, apoptosis induction, accelerated cellular repopulation, and DNA damage repair. Preliminary microarray data suggests additional mechanisms underlying the complex interaction between EGFR signaling and radiation response. These data suggest that the erlotinib/radiation combination represents a strategy worthy of further examination in clinical trials.
引用
收藏
页码:3328 / 3335
页数:8
相关论文
共 50 条
[1]  
Ang KK, 2002, CANCER RES, V62, P7350
[2]   Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells [J].
Bandyopadhyay, D ;
Mandal, M ;
Adam, L ;
Mendelsohn, J ;
Kumar, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (03) :1568-1573
[3]  
Bianco C, 2002, CLIN CANCER RES, V8, P3250
[4]   Epidermal growth factor-induced nuclear factor κB activation:: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells [J].
Biswas, DK ;
Cruz, AP ;
Gansberger, E ;
Pardee, AB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8542-8547
[5]  
BONNER JA, 2004, P AN M AM SOC CLIN, V22, P5507
[6]   Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl [J].
Chen, G ;
Yuan, SSF ;
Liu, W ;
Xu, Y ;
Trujillo, K ;
Song, BW ;
Cong, F ;
Goff, SP ;
Wu, Y ;
Arlinghaus, R ;
Baltimore, D ;
Gasser, PJ ;
Park, MS ;
Sung, P ;
Lee, EYHP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (18) :12748-12752
[7]   Delineation of prognostic biomarkers in prostate cancer [J].
Dhanasekaran, SM ;
Barrette, TR ;
Ghosh, D ;
Shah, R ;
Varambally, S ;
Kurachi, K ;
Pienta, KJ ;
Rubin, MA ;
Chinnaiyan, AM .
NATURE, 2001, 412 (6849) :822-826
[8]   A novel NF-κB-inducing kinase-MAPK signaling pathway up-regulates NF-κB activity in melanoma cells [J].
Dhawan, P ;
Richmond, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7920-7928
[9]   Biologic basis for interleukin-1 in disease [J].
Dinarello, CA .
BLOOD, 1996, 87 (06) :2095-2147
[10]   Caspase inhibitors [J].
Ekert, PG ;
Silke, J ;
Vaux, DL .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (11) :1081-1086