Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria

被引:48
作者
Schäfer, H
McDonald, IR
Nightingale, PD
Murrell, JC [1 ]
机构
[1] Univ Warwick, Dept Biol Sci, Coventry CV4 7AL, W Midlands, England
[2] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England
关键词
D O I
10.1111/j.1462-2920.2005.00757.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Marine bacteria that oxidized methyl bromide and methyl chloride were enriched and isolated from seawater samples. Six methyl halide-oxidizing enrichments were established from which 13 isolates that grew on methyl bromide and methyl chloride as sole sources of carbon and energy were isolated and maintained. All isolates belonged to three different clades in the Roseobacter group of the alpha subdivision of the Proteobacteria and were distinct from Leisingera methylohalidivorans, the only other identified marine bacterium that grows on methyl bromide as sole source of carbon and energy. Genes encoding the methyltransferase/corrinoid-binding protein CmuA, which is responsible for the initial step of methyl chloride oxidation in terrestrial methyl halide-oxidizing bacteria, were detected in enrichments and some of the novel marine strains. Gene clusters containing cmuA and other genes implicated in the metabolism of methyl halides were cloned from two of the isolates. Expression of CmuA during growth on methyl halides was demonstrated by analysis of polypeptides expressed during growth on methyl halides by SDS-PAGE and mass spectrometry in two isolates representing two of the three clades. These findings indicate that certain marine methyl halide degrading bacteria from the Roseobacter group contain a methyltransferase pathway for oxidation of methyl bromide that may be similar to that responsible for methyl chloride oxidation in Methylobacterium chloromethanicum. This pathway therefore potentially contributes to cycling of methyl halides in both terrestrial and marine environments.
引用
收藏
页码:839 / 852
页数:14
相关论文
共 49 条
[1]   Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats [J].
Allgaier, M ;
Uphoff, H ;
Felske, A ;
Wagner-Döbler, I .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) :5051-5059
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
Boettcher KJ, 1999, APPL ENVIRON MICROB, V65, P2534
[4]   Chloromethane-dependent expression of the cmu gene cluster of Hyphomicrobium chloromethanicum [J].
Borodina, E ;
McDonald, IR ;
Murrell, JC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (07) :4177-4186
[5]   Atmospheric chemistry - Better budgets for methyl halides? [J].
Butler, JH .
NATURE, 2000, 403 (6767) :260-261
[6]   Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view [J].
Chistoserdova, L ;
Chen, SW ;
Lapidus, A ;
Lidstrom, ME .
JOURNAL OF BACTERIOLOGY, 2003, 185 (10) :2980-2987
[7]   GENETICS OF THE SERINE CYCLE IN METHYLOBACTERIUM-EXTORQUENS-AM1 - IDENTIFICATION, SEQUENCE, AND MUTATION OF 3 NEW GENES INVOLVED IN C-1 ASSIMILATION, ORF4, MTKA, AND MTKB [J].
CHISTOSERDOVA, LV ;
LIDSTROM, ME .
JOURNAL OF BACTERIOLOGY, 1994, 176 (23) :7398-7404
[8]  
Connell Hancock Tracy L., 1998, Applied and Environmental Microbiology, V64, P2899
[9]  
Coulter C, 1999, APPL ENVIRON MICROB, V65, P4301
[10]  
Doronina NV, 1996, FEMS MICROBIOL LETT, V142, P179