Preparation and characterization of overcoated II-VI quantum dots

被引:68
作者
Xie, HY [1 ]
Liang, JG [1 ]
Liu, Y [1 ]
Zhang, ZL [1 ]
Pang, DW [1 ]
He, ZK [1 ]
Lu, ZX [1 ]
Huang, WH [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
关键词
quantum dots; fluorescence; quantum yield; synthesis; modification; CdSe;
D O I
10.1166/jnn.2005.119
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A convenient route for the synthesis of high-quality overcoated II-VI quantum dots (QDs) is reported in this paper. Simple salts, such as Cd(Ac)(2) and Zn(Ac)(2) were used to replace organometallics, whose disadvantage is obvious. Size-tunable core/shell structured QDs (CdSe/ZnS, CdSe/CdS, etc.) were synthesized. They were of narrow size distribution and had good monodispersivity and photoluminescence (PL) properties. The spectrum was symmetrical and sharp-pointed (with the full width at half-maximum (fwhm) of about 20-30 nm). The quantum yield (QY) was improved to 60-80% from 20-30% for bare QDs and remained stable at least for 6 months. The primary overcoated QDs were modified with biomacromolecules by a direct mechanical rubbing strategy, which is very simple and fast. The results obtained by UV-vis, PL, atomic force microscopy (AFM), and fluorescence microscopy imaging showed that the modified QDs were of good fluorescent and monodisperse characteristics. They are likely to be used further for biological labels.
引用
收藏
页码:880 / 886
页数:7
相关论文
共 36 条
[1]   Nanocrystal targeting in vivo [J].
Åkerman, ME ;
Chan, WCW ;
Laakkonen, P ;
Bhatia, SN ;
Ruoslahti, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12617-12621
[2]   INVESTIGATION OF THE SURFACE-MORPHOLOGY OF CAPPED CDSE NANOCRYSTALLITES BY P-31 NUCLEAR-MAGNETIC-RESONANCE [J].
BECERRA, LR ;
MURRAY, CB ;
GRIFFIN, RG ;
BAWENDI, MG .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (04) :3297-3300
[3]  
BOWENKATARI JE, 1994, J PHYS CHEM-US, V98, P4109
[4]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[5]   Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J].
Cao, YW ;
Banin, U .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (40) :9692-9702
[6]  
CHAN CW, 2001, THESIS INDIANA U
[7]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[8]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[9]   Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe [J].
Danek, M ;
Jensen, KF ;
Murray, CB ;
Bawendi, MG .
CHEMISTRY OF MATERIALS, 1996, 8 (01) :173-180
[10]   In vivo imaging of quantum dots encapsulated in phospholipid micelles [J].
Dubertret, B ;
Skourides, P ;
Norris, DJ ;
Noireaux, V ;
Brivanlou, AH ;
Libchaber, A .
SCIENCE, 2002, 298 (5599) :1759-1762