Homologous expression and purification of mutants of an essential protein by reverse epitope-tagging

被引:10
作者
Thomann, HU [1 ]
Ibba, M [1 ]
Hong, KW [1 ]
Soll, D [1 ]
机构
[1] YALE UNIV,DEPT MOLEC BIOPHYS & BIOCHEM,NEW HAVEN,CT 06511
来源
BIO-TECHNOLOGY | 1996年 / 14卷 / 01期
关键词
D O I
10.1038/nbt0196-50
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Purification of mutant enzymes is a prime requirement of biophysical and biochemical studies. Our investigations on the essential Escherichia coli enzyme glutaminyl-tRNA synthetase demand mutant enzymes free of any wild-type protein contamination. However, as it is not possible to express noncomplementing mutant enzymes in an E. coli glnS-deletion strain, we developed a novel strategy to address these problems. Instead of following the common tactic of epitope-tagging the mutant protein of interest on an extrachromosomal genetic element, we fused a reporter epitope to the 5' end of the chromosomal glnS-gene copy: this is referred to as 'reverse epitope-tagging.' The corresponding strain, E. coli HAPPY101, displays a normal phenotype, and glutaminyl-tRNA synthetase is exclusively present as an epitope-tagged form in cell-free extracts, Here we report the use of E. coli HAPPY101 to express and purify a number of mutant glutaminyl-tRNA synthetases independently of their enzymatic activity. In this process, epitope-tagged wild-type protein is readily separated from mutant enzymes by conventional chromatographic methods. In addition, the absence of wild-type can be monitored by immunodetection using a monoclonal antibody specific for the epitope. The strategy described here for expression and purification of an essential enzyme is not restricted to glutaminyl-tRNA synthetase and should be applicable to any essential enzyme that retains sufficient activity to sustain growth following reverse epitope-tagging.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 40 条