A multilayered approach to polyfluorene water-based organic photovoltaics

被引:68
作者
Stapleton, Andrew [1 ]
Vaughan, Ben [1 ]
Xue, Bofei [1 ,2 ]
Sesa, Elisa [1 ]
Burke, Kerry [1 ,2 ]
Zhou, Xiaojing [1 ]
Bryant, Glenn [1 ]
Werzer, Oliver [1 ]
Nelson, Andrew [3 ]
Kilcoyne, A. L. David [4 ]
Thomsen, Lars [5 ]
Wanless, Erica [1 ]
Belcher, Warwick [1 ]
Dastoor, Paul [1 ]
机构
[1] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia
[2] CSIRO Energy Technol, Newcastle, NSW 2300, Australia
[3] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Australian Synchrotron Co Ltd, Clayton, Vic 3168, Australia
关键词
Organic solar cells; Nanoparticles; Morphology; Solar paint; POLYMER SOLAR-CELLS; PHASE-SEPARATION; AQUEOUS DISPERSION; BLENDS; PERFORMANCE; FABRICATION; GENERATION; MORPHOLOGY; VARIABLES; DYNAMICS;
D O I
10.1016/j.solmat.2012.03.016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Water-based polymer nanoparticle dispersions offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic (OPV) devices; namely how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. However, to date, the efficiencies of nanoparticulate-based devices have been inferior to that of the corresponding bulk-heterojunction devices. Here we present an approach for producing optimised OPV devices from polymer nanoparticles via the fabrication of multilayered device architectures. We show that by controlling both nanoparticle morphology and inter-particle interactions it is now possible to build polyfluorene OPV devices from aqueous dispersions of nanoparticles that are more efficient than the corresponding bulk heterojunction devices. In particular we show that: (1) the polyfluorene nanoparticle morphology is suited to effective charge separation, (2) thermal treatment of the deposited layers results in improved interparticle connectivity and effective charge transport, and (3) the optimal device thickness is a delicate balance between the repair of layer defects and the creation of stress cracking in the nanoparticulate film. As such, this work offers insights for the development of printable photovoltaic devices based on water-dispersed nanoparticulate formulations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 49 条
[1]   Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods [J].
Andersen, Thomas R. ;
Larsen-Olsen, Thue T. ;
Andreasen, Birgitta ;
Bottiger, Arvid P. L. ;
Carle, Jon E. ;
Helgesen, Martin ;
Bundgaard, Eva ;
Norrman, Kion ;
Andreasen, Jens W. ;
Jorgensen, Mikkel ;
Krebs, Frederik C. .
ACS NANO, 2011, 5 (05) :4188-4196
[2]  
Birkholz M, 2006, THIN FILM ANALYSIS BY X-RAY SCATTERING, P1
[3]   Suppression of charge carrier tunneling through organic self-assembled monolayers [J].
Boulas, C ;
Davidovits, JV ;
Rondelez, F ;
Vuillaume, D .
PHYSICAL REVIEW LETTERS, 1996, 76 (25) :4797-4800
[4]   Solution-processed organic solar cells [J].
Brabec, Christoph J. ;
Durrant, James R. .
MRS BULLETIN, 2008, 33 (07) :670-675
[5]   Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales [J].
Burke, Kerry B. ;
Stapleton, Andrew J. ;
Vaughan, Ben ;
Zhou, Xiaojing ;
Kilcoyne, A. L. David ;
Belcher, Warwick J. ;
Dastoor, Paul C. .
NANOTECHNOLOGY, 2011, 22 (26)
[6]   Low-Temperature Control of Nanoscale Morphology for High Performance Polymer Photovoltaics [J].
Campbell, Andrew R. ;
Hodgkiss, Justin M. ;
Westenhoff, Sebastian ;
Howard, Ian A. ;
Marsh, Robert A. ;
McNeill, Christopher R. ;
Friend, Richard H. ;
Greenham, Neil C. .
NANO LETTERS, 2008, 8 (11) :3942-3947
[7]   DRYING OF GRANULAR CERAMIC FILMS .1. EFFECT OF PROCESSING VARIABLES ON CRACKING BEHAVIOR [J].
CHIU, RC ;
GARINO, TJ ;
CIMA, MJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (09) :2257-2264
[8]   Conjugated polymer photovoltaic cells [J].
Coakley, KM ;
McGehee, MD .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4533-4542
[9]  
Dennler G., 2008, DEVICE PHYS MANUFACT, P531
[10]  
EISAZADEH H, 1992, MATER FORUM, V16, P341