Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways

被引:95
作者
Gaddy, DF
Lyles, DS
机构
[1] Wake Forest Univ, Sch Med, Dept Microbiol & Immunol, Winston Salem, NC 27157 USA
[2] Wake Forest Univ, Sch Med, Dept Biochem, Winston Salem, NC 27157 USA
关键词
D O I
10.1128/JVI.79.7.4170-4179.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rIW51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein.
引用
收藏
页码:4170 / 4179
页数:10
相关论文
共 43 条
[1]   Effect of vesicular stomatitis virus matrix protein on transcription directed by host RNA polymerases I, II, and III [J].
Ahmed, M ;
Lyles, DS .
JOURNAL OF VIROLOGY, 1998, 72 (10) :8413-8419
[2]   Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene expression is genetically correlated with the inhibition of host RNA and protein synthesis [J].
Ahmed, M ;
McKenzie, MO ;
Puckett, S ;
Hojnacki, M ;
Poliquin, L ;
Lyles, DS .
JOURNAL OF VIROLOGY, 2003, 77 (08) :4646-4657
[3]   The Bcl-2 protein family [J].
Antonsson, B ;
Martinou, JC .
EXPERIMENTAL CELL RESEARCH, 2000, 256 (01) :50-57
[4]   Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/caspase-8 death signaling pathway [J].
Balachandran, S ;
Roberts, PC ;
Kipperman, T ;
Bhalla, KN ;
Compans, RW ;
Archer, DR ;
Barber, GN .
JOURNAL OF VIROLOGY, 2000, 74 (03) :1513-1523
[5]   Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling [J].
Balachandran, S ;
Kim, CN ;
Yeh, WC ;
Mak, TW ;
Bhalla, K ;
Barber, GN .
EMBO JOURNAL, 1998, 17 (23) :6888-6902
[6]  
Bitko V, 2001, J CELL BIOCHEM, V80, P441, DOI 10.1002/1097-4644(20010301)80:3<441::AID-JCB170>3.0.CO
[7]  
2-C
[8]   EFFECT OF VESICULAR STOMATITIS-VIRUS MATRIX PROTEIN ON HOST-DIRECTED TRANSLATION IN-VIVO [J].
BLACK, BL ;
BREWER, G ;
LYLES, DS .
JOURNAL OF VIROLOGY, 1994, 68 (01) :555-560
[9]   VESICULAR STOMATITIS-VIRUS MATRIX PROTEIN INHIBITS HOST CELL-DIRECTED TRANSCRIPTION OF TARGET GENES INVIVO [J].
BLACK, BL ;
LYLES, DS .
JOURNAL OF VIROLOGY, 1992, 66 (07) :4058-4064
[10]   THE ROLE OF VESICULAR STOMATITIS-VIRUS MATRIX PROTEIN IN INHIBITION OF HOST-DIRECTED GENE-EXPRESSION IS GENETICALLY SEPARABLE FROM ITS FUNCTION IN VIRUS ASSEMBLY [J].
BLACK, BL ;
RHODES, RB ;
MCKENZIE, M ;
LYLES, DS .
JOURNAL OF VIROLOGY, 1993, 67 (08) :4814-4821