Ephrin-B1 reverse signaling activates JNK through a novel mechanism that is independent of tyrosine phosphorylation

被引:42
作者
Xu, Z
Lai, KO
Zhou, HM
Lin, SC [1 ]
Ip, NY
机构
[1] Hong Kong Univ Sci & Technol, Dept Biochem, Mol Neurosci Ctr, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Biotechnol Res Inst, Hong Kong, Hong Kong, Peoples R China
[3] Tsinghua Univ, Dept Biol Sci & Biotechnol, Beijing 100084, Peoples R China
关键词
D O I
10.1074/jbc.M302454200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eph receptors and their cognate ligand ephrins play important roles in various biological processes such as cell migration, axon guidance, and synaptic plasticity. One characteristic feature of the Eph-ephrin signal transduction is that, upon interaction with the receptor, the transmembrane B-class ephrins become tyrosine-phosphorylated and transduce intracellular signals that lead to reorganization of the cytoskeleton. Although in vitro and genetic studies have demonstrated unequivocally the significance of this reverse signaling, the underlying mechanism remains unclear. We report here that transfection of ephrin-B1 into 293 cells resulted in robust increase in JNK activity, whereas expression of truncated ephrin-B1 lacking the cytoplasmic domain had a negligible effect, indicating that the induction of JNK activity was attributed mainly to the reverse signaling. The ephrin-B1-mediated JNK activation was reduced significantly by dominant-negative TAK1, MKK4, or MKK7. Ephrin-B1 over-expressing 293 cells became rounded in morphology. Surprisingly, ephrin-B1 that lacked all six intracellular tyrosine residues still triggered JNK activation and rounding morphology of the transfected cells. Consistent with these observations, activation of JNK and the resulting morphological changes mediated by ephrin-B1 could be abolished by the JNK inhibitor SP600125 but not the Src inhibitor PP2. Taken together, our findings have identified a novel reverse signaling pathway transduced by ephrin-B1, which is independent of tyrosine phosphorylation but involves the activation of JNK through TAK1 and MKK4/MKK7 and leads to changes in cell morphology.
引用
收藏
页码:24767 / 24775
页数:9
相关论文
共 53 条
[1]   Eph receptors and ephrin ligands: Essential mediators of vascular development [J].
Adams, RH ;
Klein, R .
TRENDS IN CARDIOVASCULAR MEDICINE, 2000, 10 (05) :183-188
[2]   SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase [J].
Bennett, BL ;
Sasaki, DT ;
Murray, BW ;
O'Leary, EC ;
Sakata, ST ;
Xu, WM ;
Leisten, JC ;
Motiwala, A ;
Pierce, S ;
Satoh, Y ;
Bhagwat, SS ;
Manning, AM ;
Anderson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13681-13686
[3]  
Birgbauer E, 2001, DEVELOPMENT, V128, P3041
[4]   Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling [J].
Boutros, M ;
Paricio, N ;
Strutt, DI ;
Mlodzik, M .
CELL, 1998, 94 (01) :109-118
[5]   EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains [J].
Brückner, K ;
Labrador, JP ;
Scheiffele, P ;
Herb, A ;
Seeburg, PH ;
Klein, R .
NEURON, 1999, 22 (03) :511-524
[6]   Tyrosine phosphorylation of transmembrane ligands for Eph receptors [J].
Bruckner, K ;
Pasquale, EB ;
Klein, R .
SCIENCE, 1997, 275 (5306) :1640-1643
[7]   Dapper, a Dishevelled-associated antagonist of β-catenin and JNK signaling, is required for notochord formation [J].
Cheyette, BNR ;
Waxman, JS ;
Miller, JR ;
Takemaru, KI ;
Sheldahl, LC ;
Khlebtsova, N ;
Fox, EP ;
Earnest, T ;
Moon, RT .
DEVELOPMENTAL CELL, 2002, 2 (04) :449-461
[8]   Ephrins in reverse, park and drive [J].
Cowan, CA ;
Henkemeyer, M .
TRENDS IN CELL BIOLOGY, 2002, 12 (07) :339-346
[9]   The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals [J].
Cowan, CA ;
Henkemeyer, M .
NATURE, 2001, 413 (6852) :174-179
[10]   EphB receptors interact with NMDA receptors and regulate excitatory synapse formation [J].
Dalva, MB ;
Takasu, MA ;
Lin, MZ ;
Shamah, SM ;
Hu, L ;
Gale, NW ;
Greenberg, ME .
CELL, 2000, 103 (06) :945-956