Drivers and modulators from push-pull and balanced synaptic input

被引:108
作者
Abbott, LF [1 ]
Chance, FS
机构
[1] Brandeis Univ, Volen Ctr, Waltham, MA 02454 USA
[2] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[3] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA
来源
CORTICAL FUNCTION: A VIEW FROM THE THALAMUS | 2005年 / 149卷
关键词
D O I
10.1016/S0079-6123(05)49011-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In 1998, Sherman and Guillery proposed that there are two types Of inputs to cortical neurons; drivers and modulators. These two forms of input are required to explain how, for example, sensory driven responses are controlled and modified by attention and other internally generated gating signals. One might imagine that driver signals are carried by fast ionotropic receptors, whereas modulators correspond to slower inetabotropic receptors. Instead, we have proposed a novel mechanism by which both driver and modulator inputs could be carried by transmission through the same types of ionotropic receptors. In this scheme, the distinction between driver and modulator inputs is functional and changeable rather than anatomical and fixed. Driver inputs are carried by excitation and inhibition acting in a push-pull manner. This means that increases in excitation are accompanied by decreases in inhibition and vice versa. Modulators correspond to excitation and inhibition that covary so that they increase or decrease together. Theoretical and experimental work has shown that such an arrangement modulates the gain of a neuron, rather than driving it to respond. Constructing drivers and modulators in this manner allows individual excitatory synaptic inputs to play either role, and indeed to switch between roles, depending on how they are linked with inhibition.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 73 条
[1]  
ANDERSEN RA, 1983, J NEUROSCI, V3, P532
[2]  
ANDERSEN RA, 1985, SCIENCE, V230, P450
[3]   Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex [J].
Anderson, JS ;
Carandini, M ;
Ferster, D .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (02) :909-926
[4]   The contribution of noise to contrast invariance of orientation tuning in cat visual cortex [J].
Anderson, JS ;
Lampl, I ;
Gillespie, DC ;
Ferster, D .
SCIENCE, 2000, 290 (5498) :1968-1972
[5]  
[Anonymous], 1992, SINGLE NEURON COMPUT
[6]  
[Anonymous], [No title captured]
[7]   SYNAPTIC BACKGROUND ACTIVITY INFLUENCES SPATIOTEMPORAL INTEGRATION IN SINGLE PYRAMIDAL CELLS [J].
BERNANDER, O ;
DOUGLAS, RJ ;
MARTIN, KAC ;
KOCH, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (24) :11569-11573
[8]   Visual input evokes transient and strong shunting inhibition in visual cortical neurons [J].
Borg-Graham, LJ ;
Monier, C ;
Frégnac, Y .
NATURE, 1998, 393 (6683) :369-373
[9]   SPONTANEOUS ACTIVITY OF NEURONS IN CATS CEREBRAL-CORTEX [J].
BURNS, BD ;
WEBB, AC .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1976, 194 (1115) :211-223
[10]   SUMMATION AND DIVISION BY NEURONS IN PRIMATE VISUAL-CORTEX [J].
CARANDINI, M ;
HEEGER, DJ .
SCIENCE, 1994, 264 (5163) :1333-1336