Constructive quasi-Ramsey numbers and tournament ranking

被引:21
作者
Czygrinow, A [1 ]
Poljak, S [1 ]
Rödl, V [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
discrepancy; linear ordering problem; derandomization; regularity lemma;
D O I
10.1137/S0895480197318301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A constructive lower bound on the quasi-Ramsey numbers and the tournament ranking function was obtained in [S. Poljak, V. Rodl, and J. Spencer, SIAM J. Discrete Math., (1) 1988, pp. 372-376]. We consider the weighted versions of both problems. Our method yields a polynomial time heuristic with guaranteed lower bound for the linear ordering problem.
引用
收藏
页码:48 / 63
页数:16
相关论文
共 16 条
[1]   THE ALGORITHMIC ASPECTS OF THE REGULARITY LEMMA [J].
ALON, N ;
DUKE, RA ;
LEFMANN, H ;
RODL, V ;
YUSTER, R .
JOURNAL OF ALGORITHMS, 1994, 16 (01) :80-109
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]  
CZYGRINOW A, 1996, LINEAR ORDERING PROB
[4]  
DELAVEGA WF, 1983, J COMB THEORY B, V35, P328
[5]   A FAST APPROXIMATION ALGORITHM FOR COMPUTING THE FREQUENCIES OF SUBGRAPHS IN A GIVEN GRAPH [J].
DUKE, RA ;
LEFMANN, H ;
RODL, V .
SIAM JOURNAL ON COMPUTING, 1995, 24 (03) :598-620
[6]  
ERIDOS P, 1974, PROBABILISTIC METHOD
[7]   The regularity Lemma and approximation schemes for dense problems [J].
Frieze, A ;
Kannan, R .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :12-20
[8]  
FRIEZE A, 1997, UNPUB QUICK APPROXIM
[9]  
Goemans M. X., 1994, Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, P422, DOI 10.1145/195058.195216
[10]   A CUTTING PLANE ALGORITHM FOR THE LINEAR ORDERING PROBLEM [J].
GROTSCHEL, M ;
JUNGER, M ;
REINELT, G .
OPERATIONS RESEARCH, 1984, 32 (06) :1195-1220