Regulation of cellular plasticity in Drosophila imaginal disc cells by the polycomb group, trithorax group and lama genes

被引:86
作者
Klebes, A
Sustar, A
Kechris, K
Li, H
Schubiger, G
Kornberg, TB [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Univ Washington, Dept Biol, Seattle, WA 98195 USA
来源
DEVELOPMENT | 2005年 / 132卷 / 16期
关键词
transdetermination; cellular plasticity; imaginal disc; polycomb group; trithorax group; expression profiling;
D O I
10.1242/dev.01927
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drosophila imaginal disc cells can switch fates by transdetermining from one determined state to another. We analyzed the expression profiles of cells induced by ectopic Wingless expression to transdetermine from leg to wing by dissecting transdetermined cells and hybridizing probes generated by linear RNA amplification to DNA microarrays. Changes in expression levels implicated a number of genes: lamina ancestor, CG12534 (a gene orthologous to mouse augmenter of liver regeneration), Notch pathway members, and the Polycomb and trithorax groups of chromatin regulators. Functional tests revealed that transdetermination was significantly affected in mutants for lama and seven different PcG and trxG genes. These results validate our methods for expression profiling as a way to analyze developmental programs, and show that modifications to chromatin structure are key to changes in cell fate. Our findings are likely to be relevant to the mechanisms that lead to disease when homologs of Wingless are expressed at abnormal levels and to the manifestation of pluripotency of stem cells.
引用
收藏
页码:3753 / 3765
页数:13
相关论文
共 78 条
[1]   Augmenter of liver regeneration enhances the success rate of fetal pancreas transplantation in rodents [J].
Adams, GA ;
Maestri, M ;
Squiers, EC ;
Alfrey, EJ ;
Starzl, TE ;
Dafoe, DC .
TRANSPLANTATION, 1998, 65 (01) :32-36
[2]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[3]   GENETIC INTERACTIONS OF THE SUPPRESSOR-2 OF ZESTE REGION GENES [J].
ADLER, PN ;
CHARLTON, J ;
BRUNK, B .
DEVELOPMENTAL GENETICS, 1989, 10 (03) :249-260
[4]  
Bach EA, 2003, GENETICS, V165, P1149
[5]  
BAKER NE, 1988, DEVELOPMENT, V102, P489
[6]   The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation [J].
Barker, N ;
Hurlstone, A ;
Musisi, H ;
Miles, A ;
Bienz, M ;
Clevers, H .
EMBO JOURNAL, 2001, 20 (17) :4935-4943
[7]   Controlling the false discovery rate in behavior genetics research [J].
Benjamini, Y ;
Drai, D ;
Elmer, G ;
Kafkafi, N ;
Golani, I .
BEHAVIOURAL BRAIN RESEARCH, 2001, 125 (1-2) :279-284
[8]   Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome [J].
Berman, BP ;
Nibu, Y ;
Pfeiffer, BD ;
Tomancak, P ;
Celniker, SE ;
Levine, M ;
Rubin, GM ;
Eisen, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :757-762
[9]   Activation of β-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation [J].
Bierie, B ;
Nozawa, M ;
Renou, JP ;
Shillingford, JM ;
Morgan, F ;
Oka, T ;
Taketo, MM ;
Cardiff, RD ;
Miyoshi, K ;
Wagner, KU ;
Robinson, GW ;
Hennighausen, L .
ONCOGENE, 2003, 22 (25) :3875-3887
[10]  
Bornemann D, 1998, GENETICS, V150, P675