Characterization of a second carotenoid β-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus

被引:94
作者
Tian, L [1 ]
DellaPenna, D [1 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
关键词
Arabidopsis; carotenoid; hydroxylase; lut1; TaqMan; xanthophyll;
D O I
10.1023/A:1011623907959
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xanthophylls are oxygenated carotenoids that perform critical roles in plants. beta -carotene hydroxylases (beta -hydroxylases) add hydroxyl groups to the beta -rings of carotenes and have been cloned from several bacteria and plants, including Arabidopsis. The lut1 mutation of Arabidopsis disrupts epsilon -ring hydroxylation and has been suggested to identify a related carotene hydroxylase that functions specifically on epsilon -ring structures. We have used library screening and genomics-based approaches to isolate a second beta -hydroxylase genomic clone and its corresponding cDNA from Arabidopsis. The encoded protein is 70% identical to the previously reported Arabidopsis beta -hydroxylase 1. Phylogenetic analysis indicates a common origin for the two proteins, however, their different chromosomal locations, intron positions and intron sizes suggest their duplication is not recent. Although both hydroxylases are expressed in all Arabidopsis tissues analyzed, beta -hydroxylase 1 mRNA is always present at higher levels. Both cDNAs encode proteins that efficiently hydroxylate the C-3 position of beta -ring containing carotenes and are only weakly active towards epsilon -ring containing carotenes. Neither beta -hydroxylase cDNA maps to the LUT1 locus, and the genomic region encompassing the LUT1 locus does not contain a third related hydroxylase. These data indicate that the LUT1 locus encodes a protein necessary for epsilon -ring hydroxylation but unrelated to beta -hydroxylases at the level of amino acid sequence.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 24 条
[1]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[2]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[3]   Xanthophyll biosynthesis:: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.) [J].
Bouvier, F ;
Keller, Y ;
D'Harlingue, A ;
Camara, B .
BIOCHIMICA ET BIOPHYSICA ACTA-LIPIDS AND LIPID METABOLISM, 1998, 1391 (03) :320-328
[4]   CAROTENOID BIOSYNTHESIS - A TARGET SITE FOR BLEACHING HERBICIDES [J].
BRAMLEY, PM .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1994, 22 (03) :625-629
[5]  
Britton G, 1990, CAROTENOIDS CHEM BIO, P167
[6]   MOLECULAR-STRUCTURE AND ENZYMATIC FUNCTION OI LYCOPENE CYCLASE FROM THE CYANOBACTERIUM SYNECHOCOCCUS SP STRAIN PCC7942 [J].
CUNNINGHAM, FX ;
SUN, ZR ;
CHAMOVITZ, D ;
HIRSCHBERG, J ;
GANTT, E .
PLANT CELL, 1994, 6 (08) :1107-1121
[7]   Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J].
Cunningham, FX ;
Pogson, B ;
Sun, ZR ;
McDonald, KA ;
DellaPenna, D ;
Gantt, E .
PLANT CELL, 1996, 8 (09) :1613-1626
[8]   Genes and enzymes of carotenoid biosynthesis in plants [J].
Cunningham, FX ;
Gantt, E .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :557-583
[9]  
Dellaporta S.L., 1983, Plant Molecular Biology Reporter, V1, P19, DOI DOI 10.1007/BF02712670
[10]   Carotenoids .3. In vivo functions of carotenoids in higher plants [J].
DemmigAdams, B ;
Gilmore, AM ;
Adams, WW .
FASEB JOURNAL, 1996, 10 (04) :403-412