Almost irreducible tensor squares

被引:29
作者
Malle, G [1 ]
机构
[1] Univ Heidelberg, IWR, D-69120 Heidelberg, Germany
关键词
D O I
10.1080/00927879908826479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a covering group of a finite almost simple group We determine those faithful irreducible complex characters chi of G for which chi x chi* - 1 is again irreducible. This gives a classification of the quasi-simple absolutely irreducible subgroups of GL(n)(q) of order prime to q which act irreducibly on the Lie algebra of type. A(n-1) via the adjoint representation. The proof uses Lusztig's description of the degrees of irreducible characters of reductive groups and the determination of Brauer trees by Fong and Srinivasan to handle the case of groups of Lie type. It turns out that the only infinite series of examples are characters of Weyl representations for SUn(F-2) and Sp(2n)(F-3).
引用
收藏
页码:1033 / 1051
页数:19
相关论文
共 16 条
[1]  
[Anonymous], LMS STUDENT TEXTS
[2]   GENERIC SYLOW THEOREMS FOR REDUCTIVE GROUPS OVER FINITE-FIELDS [J].
BROUE, M ;
MALLE, G .
MATHEMATISCHE ANNALEN, 1992, 292 (02) :241-262
[3]  
Carter R. W., 1993, Finite groups of lie type. Conjugacy classes and complex characters
[4]  
Conway J., 1985, ATLAS FINITE GROUPS
[5]   CHARACTER TABLE AND BLOCKS OF FINITE SIMPLE TRIALITY GROUPS 3D4(Q) [J].
DERIZIOTIS, DI ;
MICHLER, GO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (01) :39-70
[6]  
FONG P, 1984, MATH Z, V187, P81, DOI 10.1007/BF01163168
[7]   BRAUER TREES IN CLASSICAL-GROUPS [J].
FONG, P ;
SRINIVASAN, B .
JOURNAL OF ALGEBRA, 1990, 131 (01) :179-225
[8]   BRAUER TREES OF HECKE ALGEBRAS [J].
GECK, M .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (10) :2937-2973
[9]   THE BRAUER TREES OF THE REE GROUPS [J].
HISS, G .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (03) :871-888
[10]  
James G., 1981, The Representation Theory of the Symmetric Group