Accuracy of lattice translates of several multidimensional refinable functions

被引:65
作者
Cabrelli, C
Heil, C
Molter, U
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets;
D O I
10.1006/jath.1997.3211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Complex-valued functions f(1),..., f(r) on R(d) are refinable if they are linear combinations of finitely many of the rescaled and translated functions f(i)(Ax - k), where the translates k are taken along a lattice Gamma subset of R(d) and A is a dilation matrix that expansively maps Gamma into itself. Refinable functions satisfy a refinement equation f(x) = Sigma(k is an element of Lambda)c(k)(Ax - k), where Lambda is a finite subset of Gamma, the c(k) are r x r matrices, and f(x) = (f(1)(x), ..., f(r)(x))(T). The accuracy of f is the highest degree p such that all multivariate polynomials q with degree(q) < p are exactly reproduced from linear combinations of translates of f(1,) ..., f(r) along the lattice Gamma. In this paper, we determine the accuracy p from the matrices c(k). Moreover, we determine explicitly the coefficients gamma(alpha,i)(k) such that x(alpha) = Sigma(i=1)(r)Sigma(k is an element of Gamma)gamma(alpha,i)(k)f(i)(x + k). These coefficients are multivariate polynomials gamma(alpha,i)(x) Of degree \alpha\ evaluated at lattice points k is an element of Gamma. (C) 1998 Academic Press.
引用
收藏
页码:5 / 52
页数:48
相关论文
共 26 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93
[3]   Regularity of refinable function vectors [J].
Cohen, A ;
Daubechies, I ;
Plonka, G .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :295-324
[4]  
Cohen A., 1993, Revista Matematica Iberoamericana, V9, P51, DOI [10.4171/RMI/133, DOI 10.4171/RMI/133]
[5]   2-SCALE DIFFERENCE-EQUATIONS .1. EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) :1388-1410
[6]   THE EXPONENTIALS IN THE SPAN OF THE MULTIINTEGER TRANSLATES OF A COMPACTLY SUPPORTED FUNCTION - QUASIINTERPOLATION AND APPROXIMATION ORDER [J].
DEBOOR, C ;
RON, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 45 :519-535
[7]  
DEBOOR C, 1990, NATO ADV SCI I C-MAT, V307, P313
[8]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[9]   THE STRUCTURE OF FINITELY GENERATED SHIFT-INVARIANT SPACES IN L(2)(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :37-78
[10]   Construction of orthogonal wavelets using fractal interpolation functions [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP ;
Massopust, PR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1158-1192