Acute glucocorticoid pretreatment suppresses stress-induced hypothalamic-pituitary-adrenal axis hormone secretion and expression of corticotropin-releasing hormone hnRNA but does not affect c-fos mRNA or fos protein expression in the paraventricular nucleus of the hypothalamus

被引:76
作者
Ginsberg, AB
Campeau, S
Day, HE
Spencer, RL
机构
[1] Univ Colorado, Dept Psychol, Boulder, CO 80309 USA
[2] Univ Colorado, Ctr Neurosci, Boulder, CO 80309 USA
关键词
glucocorticoids; negative feedback; HPA axis; CRH; gene expression;
D O I
10.1046/j.1365-2826.2003.01100.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Corticosterone regulates both basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity in a negative-feedback fashion. However, the cellular and molecular mechanisms of this negative feedback have yet to be explicitly characterized. By comparing stress-induced c-fos and corticotropin-releasing hormone (CRH) expression in the paraventricular nucleus (PVN), we may be able to determine whether acute glucocorticoid treatment affects the net neural excitatory input to the PVN (represented primarily by c-fos mRNA expression) or directly affects the ability of cells in the PVN to respond to that input (represented primarily by CRH hnRNA expression). In the following studies, we observed the effect of acute glucocorticoid (RU28362) treatment on subsequent HPA axis reactivity by measuring stress-induced plasma hormone concentration [corticosterone and adrenocorticotropic hormone (ACTH)] and gene expression (c-fos and CRH) in the PVN. First, we examined the dose-response relationship between systemically administered RU28362 (1-150 mug/kg, i.p) and suppression of the stress-induced corticosterone response. We then confirmed central nervous system access of the maximally suppressive dose of RU28362 (150 mug/kg) by an ex vivo radioligand binding assay. RU28362 selectively occupied the majority of glucocorticoid receptors in the hippocampus and hypothalamus while having no effect on mineralocorticoid receptors. In separate studies, RU28362 (150 mug/kg) and corticosterone (5 mg/kg) were injected i.p. 1 h before restraint stress. Compared to vehicle-treated controls, rats treated with RU28362 and corticosterone had substantially blunted stress-induced corticosterone and ACTH production, respectively. Furthermore, treatment with RU28362 significantly blunted stress-induced CRH hnRNA expression in the PVN. By contrast, neither RU28362 nor corticosterone treatment had an effect on stress-induced neuronal activation as measured by c-fos mRNA and its protein product in the PVN. This dissociation between c-fos and CRH gene expression suggests that glucocorticoid suppression of HPA activity within this time-frame is not a result of decreased excitatory neural input to the PVN, but instead depends on some direct effect of RU28362 on cells intrinsic to the HPA axis.
引用
收藏
页码:1075 / 1083
页数:9
相关论文
共 59 条
[1]   FEEDBACK SENSITIVITY OF THE RAT HYPOTHALAMO-PITUITARY-ADRENAL AXIS AND ITS CAPACITY TO ADJUST TO EXOGENOUS CORTICOSTERONE [J].
AKANA, SF ;
SCRIBNER, KA ;
BRADBURY, MJ ;
STRACK, AM ;
WALKER, CD ;
DALLMAN, MF .
ENDOCRINOLOGY, 1992, 131 (02) :585-594
[2]   CONSTANT CORTICOSTERONE REPLACEMENT NORMALIZES BASAL ADRENOCORTICOTROPIN (ACTH) BUT PERMITS SUSTAINED ACTH HYPERSECRETION AFTER STRESS IN ADRENALECTOMIZED RATS [J].
AKANA, SF ;
JACOBSON, L ;
CASCIO, CS ;
SHINSAKO, J ;
DALLMAN, MF .
ENDOCRINOLOGY, 1988, 122 (04) :1337-1342
[3]   Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids [J].
Bamberger, CM ;
Schulte, HM ;
Chrousos, GP .
ENDOCRINE REVIEWS, 1996, 17 (03) :245-261
[4]   REGULATION OF THE MESSENGER RIBONUCLEIC-ACID FOR CORTICOTROPIN-RELEASING FACTOR IN THE PARAVENTRICULAR NUCLEUS AND OTHER BRAIN SITES OF THE RAT [J].
BEYER, HS ;
MATTA, SG ;
SHARP, BM .
ENDOCRINOLOGY, 1988, 123 (04) :2117-2122
[5]  
Campeau S, 1997, J NEUROENDOCRINOL, V9, P577
[6]   EXPRESSION OF C-FOS IMMUNOREACTIVITY IN TRANSMITTER-CHARACTERIZED NEURONS AFTER STRESS [J].
CECCATELLI, S ;
VILLAR, MJ ;
GOLDSTEIN, M ;
HOKFELT, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (23) :9569-9573
[7]   A COMPARISON OF 2 IMMEDIATE-EARLY GENES, C-FOS AND NGFI-B, AS MARKERS FOR FUNCTIONAL ACTIVATION IN STRESS-RELATED NEUROENDOCRINE CIRCUITRY [J].
CHAN, RKW ;
BROWN, ER ;
ERICSSON, A ;
KOVACS, KJ ;
SAWCHENKO, PE .
JOURNAL OF NEUROSCIENCE, 1993, 13 (12) :5126-5138
[8]   EFFECTS OF DAYTIME AND NIGHTTIME STRESS ON FOS-LIKE IMMUNOREACTIVITY IN THE PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMUS, THE HABENULA, AND THE POSTERIOR PARAVENTRICULAR NUCLEUS OF THE THALAMUS [J].
CHASTRETTE, N ;
PFAFF, DW ;
GIBBS, RB .
BRAIN RESEARCH, 1991, 563 (1-2) :339-344
[9]   PATTERN AND TIME-COURSE OF IMMEDIATE-EARLY GENE-EXPRESSION IN RAT-BRAIN FOLLOWING ACUTE STRESS [J].
CULLINAN, WE ;
HERMAN, JP ;
BATTAGLIA, DF ;
AKIL, H ;
WATSON, SJ .
NEUROSCIENCE, 1995, 64 (02) :477-505
[10]  
DALLMAN MF, 1987, RECENT PROG HORM RES, V43, P113