APPLICATION OF RECURRENCE QUANTIFICATION ANALYSIS FOR THE AUTOMATED IDENTIFICATION OF EPILEPTIC EEG SIGNALS

被引:254
作者
Acharya, U. Rajendra [1 ]
Sree, Vinitha S. [2 ]
Chattopadhyay, Subhagata [3 ]
Yu, Wenwei [4 ]
Alvin, Ang Peng Chuan [1 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[3] Natl Inst Sci & Technol, Dept Comp Sci & Engn, Berhampur 761008, Orissa, India
[4] Chiba Univ, Chiba, Japan
关键词
Epilepsy; recurrence plot; RQA; non-linear methods; classifiers; seizure; FUNCTION NEURAL-NETWORK; WAVELET-CHAOS METHODOLOGY; ALZHEIMERS-DISEASE; SEIZURES; SYNCHRONIZATION; CLASSIFICATION; DIAGNOSIS; COMPUTATION; PREDICTION; DYNAMICS;
D O I
10.1142/S0129065711002808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals. These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.
引用
收藏
页码:199 / 211
页数:13
相关论文
共 57 条
[1]   Non-linear analysis of EEG signals at various sleep stages [J].
Acharya, R ;
Faust, O ;
Kannathal, N ;
Chua, T ;
Laxminarayan, S .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (01) :37-45
[2]   Heart rate analysis in normal subjects of various age groups [J].
Acharya, Rajendra U. ;
Kannathal, N. ;
Sing, Ong Wai ;
Ping, Luk Yi ;
Chua, TjiLeng .
BIOMEDICAL ENGINEERING ONLINE, 2004, 3 (1)
[3]   AUTOMATIC IDENTIFICATION OF EPILEPTIC EEG SIGNALS USING NONLINEAR PARAMETERS [J].
Acharya, U. Rajendra ;
Chua, Chua Kuang ;
Lim, Teik-Cheng ;
Dorithy ;
Suri, Jasjit S. .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2009, 9 (04) :539-553
[4]  
Adeli H, 2005, J ALZHEIMERS DIS, V7, P187
[5]   Alzheimer's disease: Models of computation and analysis of EEGs [J].
Adeli, H ;
Ghosh-Dastidar, S ;
Dadmehr, N .
CLINICAL EEG AND NEUROSCIENCE, 2005, 36 (03) :131-140
[6]  
Adeli H, 2010, AUTOMATED EEG-BASED DIAGNOSIS OF NEUROLOGICAL DISORDERS: INVENTING THE FUTURE OF NEUROLOGY, P1
[7]   Analysis of EEG records in an epileptic patient using wavelet transform [J].
Adeli, H ;
Zhou, Z ;
Dadmehr, N .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) :69-87
[8]   A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
NEUROSCIENCE LETTERS, 2008, 444 (02) :190-194
[9]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[10]   A probabilistic neural network for earthquake magnitude prediction [J].
Adeli, Hojjat ;
Panakkat, Ashif .
NEURAL NETWORKS, 2009, 22 (07) :1018-1024