Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: Implications for proofreading of frameshift errors during DNA synthesis

被引:43
作者
Lam, WC
Van der Schans, EJC
Sowers, LC
Millar, DP
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] City Hope Natl Med Ctr, Div Pediat, Duarte, CA 91010 USA
关键词
D O I
10.1021/bi9820762
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Frameshift mutagenesis occurs through the misalignment of primer and template strands during DNA synthesis and involves DNA intermediates that contain one or more extrahelical bases in either strand of the DNA substrate. To investigate whether these DNA structures are recognized by the proofreading apparatus of DNA polymerases, time-resolved fluorescence spectroscopy was used to examine the interaction between the Klenow fragment of DNA polymerase I and synthetic DNA primer-templates containing extrahelical bases at defined positions within the template strand. A dansyl probe attached to the DNA was used to measure the fractional occupancies of the polymerase and 3'-5' exonuclease sites of the enzyme for DNA substrates with and without the extrahelical bases. The presence of an extrahelical base at the first position from the primer 3' terminus increased the level of partitioning of the DNA substrates into the 3'-5' exonuclease site by 3-7-fold, relative to the perfectly base-paired primer-template, depending on the identity of the extrahelical base. The ability of different extrahelical bases to promote partitioning of DNA into the 3'-5' exonuclease site decreased in the following order: G > A approximate to T > C. The results of partitioning measurements for DNA substrates containing a bulged adenine base at different positions within the template showed that an extrahelical base is recognized up to five bases from the primer 3' terminus. The largest effects were observed for the extrahelical base at the third or fourth positions from the primer terminus, which increased the level of partitioning of DNA into the 3'-5' exonuclease site by 8- and Is-fold, respectively, relative to that of the perfectly base-paired substrate. Steady-state fluorescence measurements of analogous primer-templates containing 2-aminopurine (AP) at the primer 3' terminus indicate that extrahelical bases increase the degree of terminus unwinding, especially when close to the terminus. In addition, steady-state kinetic measurements of removal of AP from the primer-templates indicate that the exonucleolytic cleavage activity of Klenow fragment is correlated with the increased level of partitioning of bulged DNA substrates to the 3'-5' exonuclease site relative to that of properly base-paired DNA. The results of this study indicate that misalignment of primer and template strands to generate an extrahelical base strongly promotes transfer of a DNA substrate to the 3'-5' exonuclease site, suggesting that the premutational intermediates in frameshift mutagenesis are subject to proofreading by the polymerase.
引用
收藏
页码:2661 / 2668
页数:8
相关论文
共 26 条
[1]   FLUORESCENT OLIGONUCLEOTIDES AND DEOXYNUCLEOTIDE TRIPHOSPHATES - PREPARATION AND THEIR INTERACTION WITH THE LARGE (KLENOW) FRAGMENT OF ESCHERICHIA-COLI DNA-POLYMERASE-I [J].
ALLEN, DJ ;
DARKE, PL ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1989, 28 (11) :4601-4607
[2]  
Atkinson T., 1984, OLIGONUCLEOTIDE SYNT
[3]   STRUCTURE OF DNA-POLYMERASE-I KLENOW FRAGMENT BOUND TO DUPLEX DNA [J].
BEESE, LS ;
DERBYSHIRE, V ;
STEITZ, TA .
SCIENCE, 1993, 260 (5106) :352-355
[4]   PRE-STEADY-STATE KINETIC-ANALYSIS OF SEQUENCE-DEPENDENT NUCLEOTIDE EXCISION BY THE 3'-EXONUCLEASE ACTIVITY OF BACTERIOPHAGE-T4 DNA-POLYMERASE [J].
BLOOM, LB ;
OTTO, MR ;
ERITJA, R ;
REHAKRANTZ, LJ ;
GOODMAN, MF ;
BEECHEM, JM .
BIOCHEMISTRY, 1994, 33 (24) :7576-7586
[5]   Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I [J].
Carver, TE ;
Millar, DP .
BIOCHEMISTRY, 1998, 37 (07) :1898-1904
[6]   PROOFREADING DNA - RECOGNITION OF ABERRANT DNA TERMINI BY THE KLENOW FRAGMENT OF DNA-POLYMERASE-I [J].
CARVER, TE ;
HOCHSTRASSER, RA ;
MILLAR, DP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (22) :10670-10674
[7]   DNA SUBSTRATE STRUCTURAL REQUIREMENTS FOR THE EXONUCLEASE AND POLYMERASE ACTIVITIES OF PROCARYOTIC AND PHAGE DNA-POLYMERASES [J].
COWART, M ;
GIBSON, KJ ;
ALLEN, DJ ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1989, 28 (05) :1975-1983
[8]   THE 3'-5' EXONUCLEASE OF DNA-POLYMERASE-I OF ESCHERICHIA-COLI - CONTRIBUTION OF EACH AMINO-ACID AT THE ACTIVE-SITE TO THE REACTION [J].
DERBYSHIRE, V ;
GRINDLEY, NDF ;
JOYCE, CM .
EMBO JOURNAL, 1991, 10 (01) :17-24
[9]   GENETIC AND CRYSTALLOGRAPHIC STUDIES OF THE 3',5'-EXONUCLEOLYTIC SITE OF DNA-POLYMERASE-I [J].
DERBYSHIRE, V ;
FREEMONT, PS ;
SANDERSON, MR ;
BEESE, L ;
FRIEDMAN, JM ;
JOYCE, CM ;
STEITZ, TA .
SCIENCE, 1988, 240 (4849) :199-201
[10]   SYNTHESIS AND PROPERTIES OF DEFINED DNA OLIGOMERS CONTAINING BASE MISPAIRS INVOLVING 2-AMINOPURINE [J].
ERITJA, R ;
KAPLAN, BE ;
MHASKAR, D ;
SOWERS, LC ;
PETRUSKA, J ;
GOODMAN, MF .
NUCLEIC ACIDS RESEARCH, 1986, 14 (14) :5869-5884