Bounds on European option prices under stochastic volatility

被引:30
作者
Frey, R [1 ]
Sin, CA [1 ]
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
stochastic volatility; option pricing; incomplete markets; superreplication;
D O I
10.1111/1467-9965.00064
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper we consider the range of prices consistent with no arbitrage for European options in a general stochastic volatility model. We give conditions under which the infimum and the supremum of the possible option prices are equal to the intrinsic value of the option and to the current price of the stock, respectively, and show that these conditions are satisfied in most of the stochastic volatility models from the financial literature. We also discuss properties of Black-Scholes hedging strategies in stochastic volatility models where the volatility is bounded.
引用
收藏
页码:97 / 116
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 1997, FINANC STOCH
[2]  
Avellaneda M., 1995, Appl. Math. Finance, V2, P73, DOI DOI 10.1080/13504869500000005
[3]  
BALL C, 1994, J FINANC QUANT ANAL, V29, P584
[4]   Families and clans of cysteine peptidases [J].
Barrett, AJ ;
Rawlings, ND .
PERSPECTIVES IN DRUG DISCOVERY AND DESIGN, 1996, 6 :1-11
[5]  
Black F., 1976, P 1976 M AM STAT ASS, P171
[6]  
CVITANIC J, 1999, J APPL PROBAB, V36
[7]   The Banach space of workable contingent claims in arbitrage theory [J].
Delbaen, F ;
Schachermayer, W .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (01) :113-144
[8]  
Delbaen Freddy, 1995, STOCHASTICS STOCHAST, V53, P213
[9]  
El Karoui N, 1998, MATH FINANC, V8, P93
[10]  
ELKAROUI N, 1990, ROBUSTESSE EQUATION