Phosphoinositide-dependent kinase-2 is a distinct protein kinase enriched in a novel cytoskeletal fraction associated with adipocyte plasma membranes

被引:46
作者
Hresko, RC [1 ]
Murata, H [1 ]
Mueckler, M [1 ]
机构
[1] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M302937200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
By recombining subcellular components of 3T3-L1 adipocytes in a test tube, early insulin signaling events dependent on phosphatidylinositol 3-kinase ( PI 3-kinase) were successfully reconstituted, up to and including the phosphorylation of glycogen synthase kinase-3 by the serine/threonine kinase, Akt (Murata, H., Hresko, R. C., and Mueckler, M. ( 2003) J. Biol. Chem. 278, 21607 21614). Utilizing the advantages provided by a cell-free methodology, we characterized phosphoinositide-dependent kinase 2 ( PDK2), the putative kinase responsible for phosphorylating Akt on Ser-473. Immunodepleting cytosolic PDK1 from an in vitro reaction containing plasma membrane and cytosol markedly inhibited insulin-stimulated phosphorylation of Akt at the PDK1 site (Thr-308) but had no effect on phosphorylation at the PDK2 site ( Ser-473). In contrast, PDK2 activity was found to be highly enriched in a novel cytoskeletal subcellular fraction associated with plasma membranes. Akt isoforms 1-3 and a kinase-dead Akt1 (K179A) mutant were phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate-dependent manner at Ser-473 in an in vitro reaction containing this novel adipocyte subcellular fraction. Our data indicate that this PDK2 activity is the result of a kinase distinct from PDK1 and is not due to autophosphorylation or transphosphorylation of Akt.
引用
收藏
页码:21615 / 21622
页数:8
相关论文
共 45 条
[1]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[2]   3-phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase [J].
Alessi, DR ;
Deak, M ;
Casamayor, A ;
Caudwell, FB ;
Morrice, N ;
Norman, DG ;
Gaffney, P ;
Reese, CB ;
MacDougall, CN ;
Harbison, D ;
Ashworth, A ;
Bownes, M .
CURRENT BIOLOGY, 1997, 7 (10) :776-789
[3]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[4]   PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J].
Balendran, A ;
Casamayor, A ;
Deak, M ;
Paterson, A ;
Gaffney, P ;
Currie, R ;
Downes, CP ;
Alessi, DR .
CURRENT BIOLOGY, 1999, 9 (08) :393-404
[5]   The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation [J].
Behn-Krappa, A ;
Newton, AC .
CURRENT BIOLOGY, 1999, 9 (14) :728-737
[6]   Lipid rafts and insulin signaling [J].
Bickel, PE .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 282 (01) :E1-E10
[7]   Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA [J].
Biondi, RM ;
Cheung, PCF ;
Casamayor, A ;
Deak, M ;
Currie, RA ;
Alessi, DR .
EMBO JOURNAL, 2000, 19 (05) :979-988
[8]   Ten years of protein kinase B signalling: a hard Akt to follow [J].
Brazil, DP ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) :657-664
[9]   Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin [J].
Brown, MC ;
Perrotta, JA ;
Turner, CE .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (07) :1803-1816
[10]   Assembly of focal adhesions: Progress, paradigms, and portents [J].
Craig, SW ;
Johnson, RP .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (01) :74-85