Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field

被引:87
作者
Fujisaka, H [1 ]
Tutu, H
Rikvold, PA
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Anal & Complex Dynam Syst, Kyoto 6068501, Japan
[2] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[3] Florida State Univ, Ctr Mat Res & Technol, Sch Computat Sci & Informat Technol, Tallahassee, FL 32306 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.63.036109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Ginzburg-Landau model below its critical temperature in a temporally oscillating external field is studied both theoretically and numerically. As the frequency or the amplitude of the external field is changed, a nonequilibrium phase transition is observed. This transition separates spatially uniform, symmetry-restoring oscillations from symmetry-breaking oscillations. Near the transition a perturbation theory is developed, and a switching phenomenon is found in the symmetry-broken phase. Our results confirm the equivalence of the present transition to that found in Monte Carlo simulations of kinetic Ising systems in oscillating fields, demonstrating that the nonequilibrium phase transition in both cases belongs to the universality class of the equilibrium Ising model in zero field. This conclusion is in agreement with symmetry arguments [G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett. 55, 2527 (1985)] and recent numerical results [G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 63, 016120 (2001)]. Furthermore, a theoretical result for the structure function of the local magnetization with thermal noise, based on the Ornstein-Zernike approximation, agrees well with numerical results in one dimension.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Nonequilibrium phase transition in the kinetic Ising model: Critical slowing down and the specific-heat singularity [J].
Acharyya, M .
PHYSICAL REVIEW E, 1997, 56 (03) :2407-2411
[2]   RESPONSE OF ISING SYSTEMS TO OSCILLATING AND PULSED FIELDS - HYSTERESIS, AC, AND PULSE SUSCEPTIBILITY [J].
ACHARYYA, M ;
CHAKRABARTI, BK .
PHYSICAL REVIEW B, 1995, 52 (09) :6550-6568
[3]   Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance [J].
Acharyya, M .
PHYSICAL REVIEW E, 1999, 59 (01) :218-221
[4]   Nonequilibrium phase transition in the kinetic Ising model: Is the transition point the maximum lossy point? [J].
Acharyya, M .
PHYSICAL REVIEW E, 1998, 58 (01) :179-186
[5]   Nonequilibrium phase transition in the kinetic Ising model: Divergences of fluctuations and responses near the transition point [J].
Acharyya, M .
PHYSICAL REVIEW E, 1997, 56 (01) :1234-1237
[6]  
ACHARYYA M, 1994, ANN REV COMPUTATIONA, V1, P107
[7]  
Beale P. D., 1994, Integrated Ferroelectrics, V4, P107, DOI 10.1080/10584589408018665
[8]   Algorithms for Brownian dynamics simulation [J].
Branka, AC ;
Heyes, DM .
PHYSICAL REVIEW E, 1998, 58 (02) :2611-2615
[9]   Magnetic behavior of a mixed Ising ferrimagnetic model in an oscillating magnetic field [J].
Buendía, GM ;
Machado, E .
PHYSICAL REVIEW B, 2000, 61 (21) :14686-14690
[10]   Kinetics of a mixed Ising ferrimagnetic system [J].
Buendia, GM ;
Machado, E .
PHYSICAL REVIEW E, 1998, 58 (02) :1260-1265