Interaction of E1B 19K with Bax is required to block Bax-induced loss of mitochondrial membrane potential and apoptosis

被引:46
作者
Han, JH
Modha, D
White, E
机构
[1] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Canc Inst New Jersey, Piscataway, NJ 08854 USA
关键词
Bax; E1B; 19K; mitochondrial membrane potential; apoptosis;
D O I
10.1038/sj.onc.1202215
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Bcl-2 homologous region 3 (BH3) is sufficient fbr interaction of pro-apoptotic with anti-apoptotic Bcl-2 family members, and functional antagonism may determine whether cell survival or death is the outcome of this protein-protein interaction. To address the biological role of BH3, two Bax-Bcl2 chimeras were generated in which 13 amino acids encompassing BH3 was swapped between anti-apoptotic Bcl-2 and pro-apoptotic Bax, thereby generating Bax with BH3 of Bcl-2 (Bax-BH3Bcl2), and Bcl-2 with BH3 of Bax (Bcl2-BH3Bax). Function and binding of the chimeras was then assessed utilizing the adenoviral Bcl-2 homologue, E1B 19K, which blocks apoptosis, and interacts with Bax, but not with Bcl-2. E1B 19K did not interact with Bax-BH3Bcl2 but did interact with Bcl2-BH3Bax. Bax-BH3Bcl2 retained pro-apoptotic function, while Bcl2-BH3Bax did not exhibit either pro- or anti-apoptotic activity. Thus, BH3 of Bcl-2 encodes binding specificity but not the apoptotic propensity. E1B 19K could not block Bax-P3H3Bc12-induced apoptosis, suggesting that E1B 19K may act to antagonize pro-apoptotic proteins rather than as an effector of survival. Furthermore, Bax expression disrupted the mitochondrial membrane potential, which could be rescued by E1B 19K expression. Thus, BH3 controls the binding specificity among Bcl-2 family members, and direct interaction between pro-apoptotic and anti-apoptotic proteins is a mechanism to regulate mitochondrial membrane potential and apoptosis.
引用
收藏
页码:2993 / 3005
页数:13
相关论文
共 43 条
[1]   Inhibition of Bax channel-forming activity by Bcl-2 [J].
Antonsson, B ;
Conti, F ;
Ciavatta, A ;
Montessuit, S ;
Lewis, S ;
Martinou, I ;
Bernasconi, L ;
Bernard, A ;
Mermod, JJ ;
Mazzei, G ;
Maundrell, K ;
Gambale, F ;
Sadoul, R ;
Martinou, JC .
SCIENCE, 1997, 277 (5324) :370-372
[2]  
BOYD JM, 1995, ONCOGENE, V11, P1921
[3]   Adenovirus E1B 19-kDa death suppressor protein interacts with Bax but not with Bad [J].
Chen, G ;
Branton, PE ;
Yang, E ;
Korsmeyer, SJ ;
Shore, GC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (39) :24221-24225
[4]   Bax-independent inhibition of apoptosis by Bcl-x(L) [J].
Cheng, EHY ;
Levine, B ;
Boise, LH ;
Thompson, CB ;
Hardwick, JM .
NATURE, 1996, 379 (6565) :554-556
[5]   FUNCTIONAL COMPLEMENTATION OF THE ADENOVIRUS E1B 19-KILODALTON PROTEIN WITH IN THE INHIBITION OF APOPTOSIS IN INFECTED-CELLS [J].
CHIOU, SK ;
TSENG, CC ;
RAO, L ;
WHITE, E .
JOURNAL OF VIROLOGY, 1994, 68 (10) :6553-6566
[6]   BCL-2 BLOCKS P53-DEPENDENT APOPTOSIS [J].
CHIOU, SK ;
RAO, L ;
WHITE, E .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (04) :2556-2563
[7]   INDUCTION OF APOPTOSIS BY THE BCL-2 HOMOLOG BAK [J].
CHITTENDEN, T ;
HARRINGTON, EA ;
OCONNOR, R ;
FLEMINGTON, C ;
LUTZ, RJ ;
EVAN, GI ;
GUILD, BC .
NATURE, 1995, 374 (6524) :733-736
[8]   A CONSERVED DOMAIN IN BAK, DISTINCT FROM BH1 AND BH2, MEDIATES CELL-DEATH AND PROTEIN-BINDING FUNCTIONS [J].
CHITTENDEN, T ;
FLEMINGTON, C ;
HOUGHTON, AB ;
EBB, RG ;
GALLO, GJ ;
ELANGOVAN, B ;
CHINNADURAI, G ;
LUTZ, RJ .
EMBO JOURNAL, 1995, 14 (22) :5589-5596
[9]   WILD-TYPE P53 MEDIATES APOPTOSIS BY E1A, WHICH IS INHIBITED BY E1B [J].
DEBBAS, M ;
WHITE, E .
GENES & DEVELOPMENT, 1993, 7 (04) :546-554
[10]   Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis [J].
DeMaria, R ;
Lenti, L ;
Malisan, F ;
dAgostino, F ;
Tomassini, B ;
Zeuner, A ;
Rippo, MR ;
Testi, R .
SCIENCE, 1997, 277 (5332) :1652-1655