A note on the dual treatment of higher-order regularization functionals

被引:68
作者
Steidl, G [1 ]
机构
[1] Univ Mannheim A5, Fac Math & Comp Sci, D-68131 Mannheim, Germany
关键词
Rudin-Osher-Fatemi model; higher order regularization; convex optimization; dual optimization methods; G-norm; support vector regression;
D O I
10.1007/s00607-005-0129-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we apply the dual approach developed by A. Chambolle for the Rudin-Osher-Fatemi model to regularization functionals with higher order derivatives. We emphasize the linear algebra point of view by consequently using matrix-vector notation. Numerical examples demonstrate the differences between various second order regularization approaches.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 29 条
  • [1] [Anonymous], 1987, FRONT APPL MATH, DOI DOI 10.1137/1.9780898717570
  • [2] Aubert G, 2002, Mathematical problems in image processing: Partial differential equations and the calculus of variations
  • [3] Aujol JF, 2003, LECT NOTES COMPUT SC, V2695, P297
  • [4] Image recovery via total variation minimization and related problems
    Chambolle, A
    Lions, PL
    [J]. NUMERISCHE MATHEMATIK, 1997, 76 (02) : 167 - 188
  • [5] Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
  • [6] High-order total variation-based image restoration
    Chan, T
    Marquina, A
    Mulet, P
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) : 503 - 516
  • [7] A nonlinear primal-dual method for total variation-based image restoration
    Chan, TF
    Golub, GH
    Mulet, P
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) : 1964 - 1977
  • [8] Ciarlet P., 1989, Introduction to Numerical Linear Algebra and Optimisation, DOI [DOI 10.1017/9781139171984, 10.1017/9781139171984]
  • [9] Local extremes, runs, strings and multiresolution - Rejoinder
    Davies, PL
    Kovac, A
    [J]. ANNALS OF STATISTICS, 2001, 29 (01) : 61 - 65
  • [10] DIDAS S, 2003, THESIS U SAARLANDES