Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens

被引:66
作者
Heber, U [1 ]
Bukhov, NG
Shuvalov, VA
Kobayashi, Y
Lange, OL
机构
[1] Univ Wurzburg, Julius von Sachs Inst, D-97082 Wurzburg, Germany
[2] Russian Acad Sci, Timiriasev Inst Plant Physiol, Moscow 127276, Russia
[3] Russian Acad Sci, Inst Fundamental Biol Problems, Pushchino 142292, Russia
[4] Kyushu Univ, Dept Forestry, Higashi Ku, Fukuoka 812, Japan
关键词
chlorophyll fluorescence; photoinactivation; photosystem II; proton transport; reaction centres; zeaxanthin;
D O I
10.1093/jexbot/52.363.1999
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Experimental work on the control of photosystem II in the photosynthetic apparatus of higher plants, mosses and lichens is reviewed on a background of current literature. Transmembrane proton transport during photoassimilatory and photorespiratory electron flows is considered insufficient for producing the intrathylakoid acidification necessary for control of photosystem II activity under excessive illumination. Oxygen reduction during the Mehler reaction is slow. Together with associated reactions (the water-water cycle), it poises the electron transport chain for coupled cyclic electron transport rather than acting as an efficient electron sink. Coupled electron transport not accompanied by ATP consumption in associated reactions provides the additional thylakoid acidification needed for the binding of zeaxanthin to a chlorophyll-containing thylakoid protein. This results in the formation of energy-dissipating traps in the antennae of photosystem II. Competition for energy capture decreases the activity of photosystem II. In hydrated mosses and lichens, but not in leaves of higher plants, protein protonation and zeaxanthin availability are fully sufficient for effective energy dissipation even when photosystem II reaction centres are open. In leaves, an additional light reaction is required, and energy dissipation occurs not only in the antennae but also in reaction centres. Loss of chlorophyll fluorescence during the drying of predarkened poikilohydric mosses and lichens indicates energy dissipation in the dry state which is unrelated to protonation and zeaxanthin availability. Excitation of photosystem II by sunlight is not destructive in these dry organisms, whereas photosystem II activity of dried leaves is rapidly lost under strong illumination.
引用
收藏
页码:1999 / 2006
页数:8
相关论文
共 56 条
[1]  
ANDERSSON B, 1996, PHOTOSYNTHESIS ENV, P101
[2]   REGULATORY ELECTRON-TRANSPORT PATHWAYS IN CYCLIC PHOTOPHOSPHORYLATION - REDUCTION OF C-550 AND CYTOCHROME-B6 BY FERREDOXIN IN THE DARK [J].
ARNON, DI ;
CHAIN, RK .
FEBS LETTERS, 1979, 102 (01) :133-138
[3]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[4]   Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase [J].
Bader, MR ;
von Caemmerer, S ;
Ruuska, S ;
Nakano, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2000, 355 (1402) :1433-1445
[5]   Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat [J].
Biehler, K ;
Fock, H .
PLANT PHYSIOLOGY, 1996, 112 (01) :265-272
[6]   Energy dissipation in photosynthesis: Does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? [J].
Bukhov, NG ;
Heber, U ;
Wiese, C ;
Shuvalov, VA .
PLANTA, 2001, 212 (5-6) :749-758
[7]   A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss [J].
Bukhov, NG ;
Kopecky, J ;
Pfündel, EE ;
Klughammer, C ;
Heber, U .
PLANTA, 2001, 212 (5-6) :739-748
[8]   In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley [J].
Clarke, JE ;
Johnson, GN .
PLANTA, 2001, 212 (5-6) :808-816
[9]   Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants.: Role of photosystem I-dependent proton pumping [J].
Cornic, G ;
Bukhov, NG ;
Wiese, C ;
Bligny, R ;
Heber, U .
PLANTA, 2000, 210 (03) :468-477
[10]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24