Small ubiquitin-related modifiers in chains

被引:34
作者
Vertegaal, A. C. O. [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Mol Cell Biol, NL-2300 RC Leiden, Netherlands
关键词
chain formation; E3; ligase; polymer; small ubiquitin-related modifier (SUMO); SUMOylation; ubiquitin-conjugating enzyme 9 (Ubc9);
D O I
10.1042/BST0351422
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Post-translational modification of proteins by SUMS (small ubiquitin-related modifiers) plays an important role in a wide variety of biological processes. The mammalian SUMO family includes three members, SUMO-1, SUMO-2 and SUMO-3. While target proteins are predominantly conjugated to monomeric SUMO, all three SUMO family members are able to multimerize in vitro. In cells, SUMOs have the potential to multimerize via internal consensus sites for SUMOylation that are present in SUMO-2 and SUMO-3. A SUMO-binding motif in Ubc9 (ubiquitin-conjugating enzyme 9) contributes to SUMO chain formation in vitro and SUMO E3 ligases further enhance SUMO polymerization. SUMO chain formation is reversible; SUMO polymers are disassembled by SUMO proteases both in vitro and in vivo. Despite recent progress, the functional relevance of SUMO polymerization is still unclear and little is known about the identity of the endogenous target proteins that are conjugated to SUMO polymers.
引用
收藏
页码:1422 / 1423
页数:2
相关论文
共 14 条
[1]   The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast [J].
Bylebyl, GR ;
Belichenko, I ;
Johnson, ES .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :44113-44120
[2]   Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction [J].
Capili, Allan D. ;
Lima, Christopher D. .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 369 (03) :608-618
[3]   SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae [J].
Cheng, Chung-Hsu ;
Lo, Yu-Hui ;
Liang, Shu-Shan ;
Ti, Shih-Chieh ;
Lin, Feng-Ming ;
Yeh, Chia-Hui ;
Huang, Han-Yi ;
Wang, Ting-Fang .
GENES & DEVELOPMENT, 2006, 20 (15) :2067-2081
[4]   Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: Identification of lysines in RanBP2 and SUMO targeted for modification during the E3 AutoSUMOylation reaction [J].
Cooper, HJ ;
Tatham, MH ;
Jaffray, E ;
Heath, JK ;
Lam, TT ;
Marshall, AG ;
Hay, RT .
ANALYTICAL CHEMISTRY, 2005, 77 (19) :6310-6319
[5]   Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3 [J].
Fu, CH ;
Ahmed, K ;
Ding, HS ;
Ding, X ;
Lan, JP ;
Yang, ZH ;
Miao, Y ;
Zhu, YY ;
Shi, YY ;
Zhu, JD ;
Huang, H ;
Yao, XB .
ONCOGENE, 2005, 24 (35) :5401-5413
[6]   An E3-like factor that promotes SUMO conjugation to the yeast septins [J].
Johnson, ES ;
Gupta, AA .
CELL, 2001, 106 (06) :735-744
[7]   Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation [J].
Knipscheer, Puck ;
van Dijk, Willem J. ;
Olsen, Jesper V. ;
Mann, Matthias ;
Sixma, Titia K. .
EMBO JOURNAL, 2007, 26 (11) :2797-2807
[8]   SUSP1 antagonizes formation of highly SUMO2/3-conjugated species [J].
Mukhopadhyay, Debaditya ;
Ayaydin, Ferhan ;
Kolli, Nagamalleswari ;
Tan, Shyh-Han ;
Anan, Tadashi ;
Kametaka, Ai ;
Azuma, Yoshiaki ;
Wilkinson, Keith D. ;
Dasso, Mary .
JOURNAL OF CELL BIOLOGY, 2006, 174 (07) :939-949
[9]   Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software [J].
Pedrioli, Patrick G. A. ;
Raught, Brian ;
Zhang, Xiang-Dong ;
Rogers, Richard ;
Aitchison, John ;
Matunis, Michael ;
Aebersold, Ruedi .
NATURE METHODS, 2006, 3 (07) :533-539
[10]   A proteomics approach to understanding protein ubiquitination [J].
Peng, JM ;
Schwartz, D ;
Elias, JE ;
Thoreen, CC ;
Cheng, DM ;
Marsischky, G ;
Roelofs, J ;
Finley, D ;
Gygi, SP .
NATURE BIOTECHNOLOGY, 2003, 21 (08) :921-926